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Abstract
Starlink is a satellite-based Internet access service provided by Space X. This service already has more
than 1.5 million subscribers all around the world [22], using the very same infrastructure. Starlink
satellite internet has garnered a diverse and widespread user base since its inception. Initially, its
primary target audience included rural and remote communities that lacked reliable broadband access,
connecting them to high-speed internet previously out of reach. However, as the service expanded, it
found applications in various sectors, such as maritime and aviation, providing connectivity to ships,
planes, and even remote research stations. Additionally, Starlink has attracted users in regions with
unreliable terrestrial internet infrastructure, including urban areas suffering from network congestion
or frequent outages. In recent times, amid conflicts like the Ukrainian war, Starlink has played a crucial
role by offering connectivity to war-torn regions where traditional infrastructure has been disrupted
[21]. It has become a lifeline for civilians, aid organizations, and journalists, ensuring that critical
information can be shared and emergency assistance coordinated despite challenging circumstances,
which has also brought Russians to try and disrupt the service [12]. Starlink relies on 3 components:

• A user terminal, which communicates with the satellites, and on which most of the current
research is focused.

• A satellite fleet acting as a mesh network.

• A gateway that connects the satellites to the internet.

Numerous studies have already been conducted on the subject [24, 23, 32, 28, 29], mainly on the
user terminal, which is the only component of the infrastructure that anyone can buy and analyze.
During my 6-month internship at Quarkslab as part of my Master’s degree program at the University
of Trento, I carried out the analysis of Starlink by reverse-engineering its firmware and the various
protocols it uses. At the end of the internship, I gained a good knowledge of how the device works
internally and developed a set of tools that could help other researchers working on the same topic.
These tools will be described and published along with this work.

In the first part of this document, we introduce the subject of this work and the objectives (Chap-
ter 1), then we describe how the overall Starlink network works with some more details (Chapter 2).
After this, Chapter 3 contains a hardware analysis of Starlink’s User Terminal and a description of the
dumping process of the flash memory to extract its firmware, based on existing research. Following,
Chapters 4 and 5 will show how the flash memory is organized, partitioned and verified, and how the
secure boot procedure works. Chapter 6 describes how we’ve implemented an existing hardware attack
to gain root access to the device, which, unfortunately, failed by breaking two devices. Back on the
software side, Chapter 7 shows how the runtime is organized and how we’ve analyzed some binaries
that run in it, and Chapter 8 shows how we dynamically tested runtime binaries in an emulated en-
vironment since, at the time, no physical device was available to us. The last part of the document
(namely Chapters 9 and 10) shows where we focused and how we changed the objectives of this work,
due to the encountered technical problems, by describing how the communication within the device
(IPC) and with external devices is implemented, and by also fuzzing some parts of this software in
different ways.

3



1 Introduction
This work was developed during my internship at Quarkslab in Paris during the spring and summer
of 2023. The objective of the internship was to analyze Starlink’s User Terminal, a device used to
connect to satellites for internet service. This includes:

• Dumping the firmware of the device.

• Reverse-engineering the software running on the device.

• Trying to gain root access to the device to perform dynamic testing.

• Analyzing the network stack and protocols used to communicate with satellites.

• Performing vulnerability research and studying the attack vector.

Some of these objectives changed during the internship due to some complications in gaining access to
the device and in the analysis of lower-level binaries.

Previous research on the User Terminal had already been performed by a few researchers, but
still not many details were publicly available at the time. Other researchers focused on the hardware
analysis of the device [24, 23, 32] and some high-level firmware analysis [28], without going into details,
and finally, one researcher developed a hardware attack to gain root access [29], which we tried to
replicate in Chapter 6. Some tools that interact with the APIs of the device that are used by the
mobile application to act as alternative dashboards to inspect statistics gathered by the User Terminal
have also been implemented [18, 19].

SpaceX’s security team encourages responsible security research on their devices by providing test-
ing hardware with root access on it [15], but we were only accepted in this program in late July,
actually receiving the hardware in August, which was the last month of the internship, thus it wasn’t
much of help to us.

During this internship, I’ve also developed some tools to better analyze the firmware or the runtime
of the device under study, which will be published as open-source code and will be discussed in the
following chapters [27]. This research is meant to be a starting point and can be used as a reference
for further security research on the device.
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2 Starlink
Starlink is the new satellite internet solution provided by SpaceX, which offers greater speed and
bandwidth compared to other solutions already present on the market, at a reasonable price. At the
moment of writing, one can have a satellite internet connection in Europe for as little as 40-50e/month
with a startup cost of around 300e for the hardware [17]. Moreover, the bandwidth and latency of the
connection are pretty decent, with Starlink you can reach up to 200Mbps and latency between 25 and
50 milliseconds, which is already way better than an ADSL connection and comparable to a typical
FTTC setup.

All of this is only possible because of where Starlink’s satellites are deployed. Most satellite internet
providers, before Starlink, use geostationary satellites, which are 35786km far away from the Earth.
A radio signal takes around 120ms to travel that distance, and since one wants to reach the internet,
the signal has to travel from the final user to the satellite (1), from the satellite to a ground station
connected to the internet (2), from the ground station to the server the user wants to reach and back,
then again from the ground station to the satellite (3), and finally from the satellite to the final user
(4). This means that the signal has to travel that distance 4 times, so the latency will be, without
taking into account the latency from the ground station to the server and any processing time, at least

4×
[
35786km× 1000 m

km

299792458m
s

]
× 1000

ms

s
≈ 477.5ms

And that is why existing satellite internet solutions that use this kind of satellite are not usable if the
customer needs to use real-time applications such as video calls or gaming. As an example, in the third
quarter of 2022, HughesNet had an average latency of 850ms and Viasat had an average latency of
720ms [10].

Figure 2.1: Starlink satellites [13]

Starlink satellites are instead LEO (Low Earth Orbit) satellites,
which are much closer to the Earth, at approximately 550 km. Mak-
ing the same computations as before, a signal takes around 1.8ms,
which sets a lower physical limit of

4×
[
550km× 1000 m

km

299792458m
s

]
× 1000

ms

s
≈ 7.3ms

Because of this, from the same Ookla report, Starlink
users experience a latency that can be lower than 100ms
[10].

Objects in this orbit need to move much faster than the Earth
in order not to experience orbital decay, so to always have a visible
satellite from a fixed point on the ground you need a lot of them to
form a sort of mesh all around the globe. At the time of writing, Starlink has 3798 active satellites, 541
inactive satellites and 354 satellites that have reached the end of life or crashed for some reason (see
Figure 2.1) [13], but Starlink plans to deploy nearly 12,000 satellites, with a possible later extension
to 42,000.

Starlink satellites are also much smaller, lighter and cheaper than traditional geostationary satel-
lites. Thanks to this, Starlink can deploy a lot of them together, up to 60 with a single launch, which
drives down a lot of production and launch costs of a single satellite.

5



2.1 Components
The three main components of Starlink’s network infrastructure are Satellites, User Terminals and
Gateways. This research’s focus is the User Terminal, here is a quick overview of all the components.

Figure 2.2: Starlink components

User Terminals (UTs)
The User Terminal is the only piece of hardware you can get your hands on, and it is also the focus of
this research. This device handles communication with satellites and, on higher levels, routing packets
from the internal (customer) network to Starlink’s private network.

(a) Version 1 and 2 (b) Version 3

Figure 2.3: Starlink User Terminal [17]

Figure 2.3 shows two different versions of the User Terminal. The antenna will be placed where it
can directly see the sky (e.g. on a roof) and will then automatically tilt toward the best direction and
continuously scan the sky for satellites to always connect to the optimal one. Customers will be able
to connect to Starlink’s network using a wifi access point directly connected to the User Terminal.

Gateways
Gateways are ground stations that are connected to the internet and can reach satellites. There
currently are 147 operational gateways, placed all around the globe and many more are in the process
of construction and/or approval [7]. They act, as the name suggests, as gateways for Starlink’s private
network, so when a customer tries to reach the Internet, this is what will be used as an exit point.
We know very little about these components, but the hardware is probably very similar to the one of
User Terminals, perhaps more "powerful".

6



Satellites
Satellites are the missing piece to connect the User Terminals to the gateways. They act as a bridge
between the two aforementioned devices, thus connecting the User Terminal to the Internet (through
the gateways).

(a) 60 satellites, stacked for launch (b) Satellite

Figure 2.4: 3D rendering of a satellite and the payload of a rocket launch [17]

Figure 2.4a shows how 60 of these satellites can be stacked and fit into Falcon 9 rocket launch, and
figure 2.4b shows what a Starlink satellite looks like, it is equipped with [17]:

• a solar array panel;
• autonomous collision avoidance sensors;
• ion thrusters, for collision avoidance, orbit raise and deorbit at the end of life;
• star tracker, to determine the location, altitude and orientation of the satellite;
• optical space lasers (Optical Intersatellite Links), to communicate with each other (still testing);
• 4 phased array antennas and 2 parabolic antennas.

2.2 Radio communication
Starlink uses the Ku and Ka microwave bands to communicate with user terminals and gateways,
more specifically the downlink for the Ku band is in the range [10.7, 12.7] GHz, while the uplink is
in [14.0, 14.5] GHz, and for the Ka band downlink and uplink are in [17.7, 19.7] GHz and [27.5, 30.0]
GHz, respectively. While for modulation they use Quadrature Phase-Shift Keying (QPSK) and Binary
Phase-Shift Keying (BPSK) in the Ku band and more advanced modulation schemes such as 8-PSK
and 16-APSK in the Ka band [20]. Every component (UT, Sat, gw) is equipped with (at least) a
phased array antenna which creates a beam of radio waves that can be electronically steered to point
toward the receiving device, without physically turning the antenna. This is particularly useful in this
case because satellites are moving w.r.t. the Earth, and switches from one satellite to another have to
be made frequently by ground stations.

Starlink is still in an early stage of deployment (the goal is circa 12,000 satellites in multiple orbits).
As of now, results achieved by the new LEO constellation are very promising and this could be a game
changer for internet service in rural areas.
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3 User Terminal teardown
The device we analyzed is the User Terminal version 2 (REV 2, PROTO 3), which is the round dish.
Several other researchers [23, 24, 32] have already deeply described the hardware of this device.

Figure 3.1: Disassembled Starlink User Terminal

Figure 3.2: RF Hardware

Most of the area on the board is used for RF hard-
ware, which is composed of a set of cells, contain-
ing a Digital BeamFormer (DBF), namely STM GLLB-
SUABBBA and several Front-End Modules (FEMs), namely
GEAAA21132DH501, shown in Figure 3.2. This set of
Digital BeamFormers forms a phased array antenna, which
can "tilt" the transmitted signal toward a specific direc-
tion (i.e. the satellite) without actually tilting the an-
tenna.

Other than that, there is a GPS chip (STM STA8089) and
a chip for clock generation (GLLBLU), probably used by the RF
components, some connectors, a circuit that handles power over
ethernet and, of course, the main System-on-Chip (SoC).
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Figure 3.3: UT Connectors

The connectors, shown in Figure 3.3, are also accessible with-
out fully disassembling the device. The first one on the left is
where the ethernet cable that comes from the provided power
supply (versions 1-2) or the wifi router (version 3) is connected,
and serves both data and power (Power over Ethernet, PoE),
it doesn’t use any IEEE 802.3* standard though, because it re-
quires a lot of power (up to 180W at 56V DC) [3]. The second
one is the controller for the motors that tilt the antenna. Fi-
nally, the third one, which is a set of test pins, is the UART
interface, which had been disabled in the version of the dish we
were analyzing.

3.1 System-on-Chip overview
The main System-on-Chip of the board is shown in the following picture.

Figure 3.4: Main System-on-Chip

The main components are:

1. The microcontroller (STM GLLCCODGBF, codename: CATSON) is a custom quad-core ARM
Cortex-A53 processor.

2. The RAM is composed of two DDR3 chips of 4Gbit each.
3. The persistent memory (removed in this picture) is a 4GB eMMC.
4. The secure element is an STM STSAFE-A110

Figure 3.5: Hardware version GPIO pins

From a visual inspection of the hardware, one can also
understand the specific version and cut it is being ana-
lyzed: 5 "fixed" GPIO pins are either connected to the
ground or 3.3V, see Figure 3.5.
And from the bootloader code [31]:

#define BOARD_REV_2_3P0 "#rev2_proto3"
// [...]
case 0b10001:

board_rev_string = BOARD_REV_2_3P0;
// [...]

We can say that our board is the User Terminal version 2
cut 3.
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3.2 Persistent memory dump
To get the firmware of the User Terminal (which is not publicly available), we used a procedure ex-
plained by the COSIC research group at KU Leuven in a blog post [28].

Figure 3.6: eMMC test pins

We first identified the test pins of the eMMC chip,
which are:

• The Clock pin (CLK), to synchronize the host and
the eMMC chip

• The Command pin (CMD), to send commands to
the eMMC

• The data pins (D[0-7]), for data transfer

With these, it is possible to dump the whole content of the
chip, without the need of removing it from the board.

The host is using the Secure Digital Input/Output (SDIO) protocol to interact with the chip,
which supports 8-bit, 4-bit and 1-bit modes [14]. This means that the only required pins needed for
the firmware dump are CLK, CMD and D01. The dump can be done by wiring those pins to an
SD-Card adapter2 and has to be done when the board is not powered, otherwise, the SoC will interfere
with the transfer by trying to access the eMMC and sending commands to it. This eMMC supports
both 3.3V and 1.8V, SD cards usually work at 3.3V, but the SoC uses the 1.8V mode, so it could be
dangerous to use 3.3V, even if the board is not powered on, since the eMMC pins will still be connected
to the processor. For this reason, a voltage shifter has to be used3. Figure 3.7 shows the final setup.

Figure 3.7: Setup for the firmware dump

After connecting the adapter to a computer, the memory can be dumped completely in a few min-
utes. With a first look at the content, the device does not appear to be partitioned nor contain any
standard filesystem. Further manual analysis will be required, see Chapter 4.

1By using the 1-bit mode, data transfer will be much slower
2An adapter that supports the 1-bit mode
3The eMMC needs to be powered with 3.3V, but control and data pins need to use 1.8V
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4 Firmware analysis
After dumping the whole content of the eMMC chip, the persistent memory of the dish, the image does
not seem to contain any standard filesystem, and by using standard extraction tools such as binwalk,
some of the content has been identified, with a lot of false positives. Here is part of the output:

Listing 4.1: binwalk output

HEXADECIMAL DESCRIPTION
-----------------------------------------------------------------------------
0x644E08 SHA256 hash constants, little endian
0x67C2C4 Unix path: /usr/sbin/sxruntime_start [...]
[...]
0xF31000 romfs filesystem, version 1 size: 736 bytes, named "sxverity"
0xF51000 romfs filesystem, version 1 size: 736 bytes, named "sxverity"
0x1000007 Flattened device tree, size: 13668532 bytes, version: 17
0x147C198 Flattened device tree, size: 57661 bytes, version: 17
[...]
0x8000000 LUKS_MAGIC sha256
[...]

From this output, it looks like the image could contain a Unix-like filesystem since there is a
reference to a Unix path, some filesystems named "sxverity" that could be something like Linux’s
"dm-verity", some Flattened device trees (FDTs) that are descriptions of the hardware that will be
used by the operating system to know which hardware is available and where/how it can find periph-
erals. Finally, there are also some LUKS (Linux Unified Key Setup) encrypted partitions.

But this is not all, there are still a lot of missing pieces in the image that have to be identified
and analyzed. Luckily, SpaceX is using some open-source projects that come with the GPL license,
thus they need to publish their modifications to such projects for compliance. One of these is U-Boot,
which is the BL33 stage of the boot chain, and from its code [31], we can get a lot of useful information
on how the memory is structured and partitioned.

Thanks to this we can now split the whole
image into small partitions and analyze each
of them separately. In Appendix A.1 you can
find a Python script that takes the whole
dump and splits it into different partitions.

From this, we can also notice that almost ev-
ery partition is present multiple times (e.g.
linux a/b). This is probably because of the
software update procedure, which will over-
write the partition that is not currently being
used so that in the case of an error, there will
still be the original partition that is known to
be "correct".

Listing 4.2: include/configs/spacex_catson_boot.h

+-----------------+ 0x0000_0000
| bootfip0 (1 MB) |
+-----------------+ 0x0010_0000
[...]
+-----------------+ 0x0060_0000
| fip a.0 (1 MB) |
+-----------------+ 0x0070_0000
[...]
+-----------------+ 0x0100_0000
| linux a (32 MB) |
+-----------------+ 0x0300_0000
| linux b (32 MB) |
+-----------------+ 0x0500_0000
[...]

4.1 Partitions
Here is an overview of each partition that we identified inside the dumped image, some of them were
empty (full of 0xFF) probably because they were either used in an older version or they are only used
on development hardware.
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Bootfip [0/1/2/3]
This section is replicated four times, which means that there can be four different versions of what’s
inside at the same time. Tools such as binwalk weren’t able to find results on this partition, and
from manual analysis, of the available open-source code and the image itself, it became clear that the
partition contains a FIP (Firmware Image Package) image.

This type of image is used by ARM Trusted Firmware-A (ARM TF-A), which is a reference
implementation of the secure world initialization and boot chain for Armv7-A, Armv8-A and Armv9-A
architectures [1]. ARM TF-A also includes fiptool, a tool used to pack and unpack FIP images.

Listing 4.3: fiptool info bootfip0

Trusted Boot Firmware BL2:
offset=0x118, size=0xF178,
cmdline="--tb-fw",
sha256=53a34633e3a9dbb89998bd43e01edf34006462df6005f000af439452eb1abce7

Trusted Boot Firmware BL2 certificate:
offset=0x88, size=0x90,
cmdline="--tb-fw-cert",
sha256=e08bf3277c9761b64fd21907a59e12a0e7e56d567ee4ef90011b1592f00a345c

The image contains a boot image (BL2) and its certificate, which can be extracted by directly using
the offset and size of each element or by using fiptool unpack /path/to/image. This will be
analyzed further in Chapter 5.

fip [a.0/a.1/b.0/b.1]
This section, as the name suggests, also contains a FIP image.

Listing 4.4: fiptool info fip_a.0

Trusted Boot Firmware BL2: [...]
EL3 Runtime Firmware BL31: [...]
Non-Trusted Firmware BL33: [...]

Trusted key certificate: [...]
Trusted Boot Firmware BL2 certificate: [...]
Non-Trusted Firmware key certificate: [...]
Non-Trusted Firmware content certificate: [...]
SoC Firmware key certificate: [...]
SoC Firmware content certificate: [...]

It contains 3 other bootloader images, that will be loaded and executed by the BL2 image in the
previous section. This will be analyzed further in Chapter 5 as well.

Linux [a/b]
This partition, as the name suggests, should contain the full-fledged Operating System that will run
in the Normal World, but the image starts with what looks like a magic number, but not a known one:

Listing 4.5: FIT magic bytes

$ dd if=linux_a bs=1 count=7 status=none
SXECCv1

By looking into the available open-source code from SpaceX, we were able to identify the format
of the image, which is a customized ECC-protected (Error Protecting Code) image. Here is the code
from SpaceX’s uBoot bootloader [31]:
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Listing 4.6: include/spacex/ecc.h

#define ECC_BLOCK_SIZE 255
#define ECC_MD5_LEN 16
#define ECC_EXTENSION "ecc"
#define ECC_FILE_MAGIC "SXECCv"
#define ECC_FILE_VERSION ’1’
#define ECC_FILE_MAGIC_LEN (sizeof(ECC_FILE_MAGIC) - 1)
#define ECC_FILE_FOOTER_LEN sizeof(file_footer_t)
#define ECC_DAT_SIZE (ECC_BLOCK_SIZE - NPAR - 1)

#define ECC_BLOCK_TYPE_DATA ’*’
#define ECC_BLOCK_TYPE_LAST ’$’
#define ECC_BLOCK_TYPE_FOOTER ’!’

After extracting the actual image (removing ECC information) with a script you can find in Ap-
pendix A.2 (see Section 4.2.1), we were able to correctly identify the content of the image, which is
a Flattened uImage Tree (FIT). This type of image has been created for U-Boot, to pack everything
the bootloader needs to load into a single image, which is the kernel, the ramdisk and the Flattened
Device Tree (FDT), possibly with multiple configurations. With the dumpimage tool (from U-Boot)
we were able to inspect the image and its content:

Listing 4.7: dumpimage -l linux_a

FIT description: Signed dev image for catson platforms
Created: Fri Jan 6 05:28:00 2023

Image 0 (kernel)
Description: compressed kernel
Type: Kernel Image
Architecture: AArch64
OS: Linux
Load Address: 0x80080000
Entry Point: 0x80080000

[...]
Image 14 (rev2_proto3_fdt)

Description: rev2 proto 3 device tree
Type: Flat Device tree
Load Address: 0x8f000000

[...]
Image 27 (ramdisk)

Description: compressed ramdisk
Type: RAMDisk Image
Architecture: AArch64
OS: Linux
Load Address: 0xb0000000
Entry Point: 0xb0000000

Default Configuration: ’rev2_proto2’
[...]
Configuration 13 (rev2_proto3)

Kernel: kernel
Init Ramdisk: ramdisk
FDT: rev2_proto3_fdt

[...]

The FIT image contains a kernel, a ramdisk image and a bunch of FDTs, one for each hardware
revision of the User Terminal, Transceiver and other devices (utdev, mmut, mini, hp). All the different
configurations share the same kernel and ramdisk image.
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Kernel

The Kernel image is Linux kernel ARM64 boot executable Image, little-endian, 4K
pages

Listing 4.8: strings kernel | grep version

Linux version 5.15.55-rt48-g29cea1731348 (buildroot@buildroot)
(aarch64-ct_aarch64-linux-musl-gcc
(crosstool-NG 1.24.0.11-6c073bf - 10ec388) 8.3.0,
GNU ld (crosstool-NG 1.24.0.11-6c073bf - 10ec388) 2.32)
#1 SMP PREEMPT_RT Fri Jan 6 04:28:00 UTC 2023

It’s a customized version of Linux which, thanks to its license, is available on SpaceX’s GitHub
page [16]. The last available source code is sx_2022_04_29 which is a little bit older than the one we
find in the dish. Furthermore, the open-sourced code only contains modifications made to the kernel
code, but not new device drivers or runtime binaries.

By using the extract-ikconfig script from Linux, it is possible to extract the build configuration
of Linux from the compiled kernel image. This will be useful in Chapter 8 when we’ll have to compile
a kernel that will work with the emulator engine and with SpaceX’s software.

Ramdisk

The ramdisk is usually the filesystem that is initially mounted in "RAM", during the Linux startup
process, that can be used by the kernel to load external modules. In this case, the ramdisk is the root
filesystem and will live throughout the whole execution of the kernel.

Listing 4.9: file ramdisk

ramdisk: ASCII cpio archive (SVR4 with no CRC)

It comes in an uncompressed CPIO archive, which can be easily extracted with the cpio utility.
The content of this filesystem is the standard structure you expect to find in a Linux root filesystem,
with BusyBox instead of the usual GNU toolset. From this, we can already understand some details
on how the runtime works (network configuration, mount points, etc.), but this will be discussed in
Chapter 7.

FDT

The Flattened Device Tree is a data structure holding information about the hardware, such as the
number and type of CPUs, size of RAM, busses and bridges, peripheral device connections, interrupt
controllers and IRQ line connections, GPIO pins, and more [2]. This is used, on different levels, by
the bootloaders and the kernel to know how to interact with the hardware it is running on and how
to initialize all the components of the machine. This is why every little modification in the hardware
needs a separate Device Tree. Some useful information about hardware and peripherals can be found
by looking at the FDT of our hardware revision. Here are some small parts of it:

The "header" contains the name of the device and the compatible architectures:

Listing 4.10: FDT header

compatible = "st,gllcff";
model = "spacex_satellite_user_terminal";
sx-dts-commit = "29cea17313485caecba83aec7b5a97e9ef7cefda";
sx-dts-branch = "ssh://git@stash:7999/fswplat/linux.git master";
sx-dts-build = "e98c62a7d269cc897a63f485c84344e8893bfe59";

A section containing information about the main CPU and its caches:
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Listing 4.11: CPU and cache

cpus {

cpu@0 {
compatible = "arm,cortex-a53\0arm,armv8";
device_type = "cpu";
reg = <0x00 0x00>;
next-level-cache = <0x4b>;

};

// other three CPUs...

l2-cache0 {
compatible = "cache";
phandle = <0x4b>;

};
};

A section called security, which holds some fixed public keys that are used for validation:

Listing 4.12: Security section

security {
dm-verity-pubkey = <REDACTED>;
dm-verity-version-info = <REDACTED>;
dm-verity-tftp = <REDACTED>;
[...]

};

A section containing mappings of GPIO pins:

Listing 4.13: GPIO mappings

gpios {
ant_power = <0x14 0x00 0x00>;
dbf_reset = <0x0e 0x06 0x00>;
gps_boot = <0x0b 0x04 0x01>;
gps_reset = <0x0f 0x04 0x01>;
self_reset = <0x10 0x00 0x01>;
[...]

};

sx [a/b]

This section contains the runtime of the User Terminal, but it comes in yet another custom format.
The magic bytes of this image are "sxverity" which reminds "dm-verity", a Linux feature to mount
devices whose content is digitally signed and verified upon access [4]. In fact, by further analyzing
the content of this image and the sxverity binary that was found in the ramdisk, we confirmed
this assumption. The format of this image and the mounting/verification process will be discussed in
section 4.2.2, for now, we just need to know that the actual content of the image can be found at offset
0x1000, in the form of a rom1fs filesystem.

After extracting the content of the filesystem, we found all the binaries that will handle the runtime
of the dish and some configuration files used by them. By looking into the initialization scripts found
in the ramdisk, we also know that this partition will be mounted at /sx/local/runtime. This will
be discussed further in Chapter 7.
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EDR & DishConfig

These two partitions are encrypted using the Linux Unified Key Setup (LUKS) because the device
needs to be able to write on them with persistence. These are the only two partitions mounted at
runtime with write permissions. The first one, EDR, stands for Ethernet Data recorder and serves as
storage for telemetry data regarding the traffic flowing through the device. The file /sx/local/run-
time/dat/common/file_edr contains some rules on which data to record and how to save it. The
second one has a self-explanatory name, it is used as a persistent storage for configuration files of the
dish that can change often (e.g. the inclination of the antenna).

The keys used to encrypt the partitions are stored inside the CPU, in the form of eFuses (electronic
fuses). An eFuse works exactly like a fuse, once it has been blown, its state cannot be changed, thus it
can be used as a write-only-once bit cell. With multiple eFuses you can store more information, such
as an encryption key.

eFuses are exposed to the userland by using device drivers so that the userland applications can
interact with them (read and blow) by simply reading or writing to files under the folder "/sys/de-
vices/platform/soc/22400000.catson_fuses/". The encryption key can be read through the file ekey
(ckey for dish config), and it is written the first time the device boots when the encrypted partition
is initialized. This is done by writing a "1" to the file burn_ekey, whose handler can be found in the
open-sourced version of Linux by SpaceX.

Listing 4.14: linux-sx/drivers/misc/sx/sx_catson_fuse.c

arm_smccc_smc(CATSON_SIP_SVC_BLOW_EKEY, 0, 0, 0, 0, 0, 0, 0, &res);

The driver simply calls the secure monitor, which will handle the secure monitor call (SMC) and
physically burn the eFuses using the hardware random number generator. The source code of the
secure monitor is not available to us, but we know it is based on ARM TF-A, and it’s using the ARM
SiP (Silicon Provider) service.

version [a/b]

This section contains a sxverity image as well, by using the same technique we used for the sx partition,
we were able to extract the content. The internal filesystem only contains one file, version_info:

Listing 4.15: version_info

[metadata]
gauntlet_build_id c36a30b4-93ac-4a14-b663-0622ef7ed944.uterm.release
generation_number 1674091226

[partitions]
Image.fit.ecc 6784c5aa76887cdc950b6a5e723c7095149713f0dd8897460721b93e3a00c76d 15700403
SPACEX_CATSON_TRANSCEIVERboot.bin

b4614fd5d697ba878e0759bd831ff03c5837a060ae2c394e8b32389bd256f32b 579344
SPACEX_CATSON_UTERM_EMMCboot.bin 62

f005932196f61210c1bc5cd4099d654354a05a54c48bc4d687019822ae85e5 590808
SPACEX_CATSON_UTERMboot.bin

c6b600b3d4c11f90e48c4adcf35f9602f851c2a08a083b409ccafa251c0339e4 579344
runtime.sxv b90409e252c916a56da2f25cbbbab5c8758f66f8d3ba175a5f7ced610ec3567c 20419584

The file contains information about the installed version of some software components, such as
the U-Boot bootloader (SPACEX_CATSON_UTERM_EMMCboot.bin), the FIT image containing the
kernel, ramdisk and FDTs (Image.fit.ecc) and the runtime image (runtime.sxv)

The other partitions were either found to be empty in our dump (full of 0xFF) or they are simply
not worth mentioning.
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4.2 Data Integrity
As we have seen from a brief analysis of the content of the eMMC dump, SpaceX is using some custom-
made mechanisms for data integrity, along with the standard ones already included in ARM TF-A and
U-Boot. A detailed analysis of the chain of trust can be found in Chapter 5, here is an overview of the
custom-made components.

4.2.1 ECC
The Error Correcting code mechanism is only used in the FIT image and only provides data integrity,
without considering authenticity. This means that, in theory, if one wants to tamper with some ECC-
protected components of the dish they can do that by providing a correctly formatted version of it,
so by implementing themselves the ecc procedure (or by using the binary that can be found in the
ramdisk). But for the FIT image, this is not possible because authenticity is also checked by the last
bootloader stage (see Chapter 5). So this is just used to prevent errors in the eMMC storage.

This works similarly to its original ancestor, the ECC RAM, which embeds some additional data
in between the actual content of the memory - originally Hamming codes - that are computed as a
function of the data they are "protecting". Then, when some data is accessed, Hamming codes are
recomputed and if they do not correspond to the ones saved in memory, an error occurred, and de-
pending on how many bits have been mistakenly flipped, the error can be corrected. This version of
ECC uses Reed-Solomon error correction (instead of Hamming codes) and a final hash (i.e. MD5) to
check the integrity of the whole file that is being decoded.

In Appendix A.2 you can find a simple Python script that simply strips out ECC information from
a file, without checking the correctness of the data, that we used to be able to unpack the FIT image.
But inside the ramdisk, there is a binary (unecc) that does the same thing also checking and trying
to correct possible errors.

(a) Header block (b) Data block (c) Last data block (d) Footer block

Figure 4.1: ECC blocks

The content of ECC-protected files is organized into blocks of different types, Figure 4.1 shows how
each block is structured. The file starts with a header block (a), which contains the magic number
and the version of the protocol, along with some data and the corresponding control codes. Then,
there can be zero or more data blocks (b) containing just data and control codes. A last data block
(c), which is recognized by its block type field ($, instead of *), marks the end of the payload, some
padding is added here if needed. Finally, the footer block (d) contains the size of the payload (needed
to know the number of padding bytes), an MD5 checksum of the whole payload and, of course, ECC
code words for the footer block itself.

4.2.2 sxverity
sxverity is a custom wrapper for the device-mapper-verity (dm-verity) kernel feature, which pro-
vides transparent integrity checking of block devices [8]. The source code of the sxverity binary is
not publicly available, thus we had to reverse the compiled binary to understand the internals. This
provides both data integrity and authenticity thanks to a signature check that verifies the whole con-
tent of the device. sxverity internally uses the dm-verity kernel feature, by directly interacting with
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it through the /dev/mapper/control device.

SpaceX only tackled the verification of the root hash, everything underneath, which is handled by
the kernel, has not been reimplemented, so here is a quick overview of the internals of dm-verity.

dm-verity

The dm-verity feature lets you look at a block device, the underlying storage layer of the file system,
and determine if it matches its expected configuration. It does this using a cryptographic hash tree.
For every block (typically 4k), there is a SHA256 hash. Because the hash values are stored in a tree
of pages, only the top-level "root" hash must be trusted to verify the rest of the tree. The ability to
modify any of the blocks would be equivalent to breaking the cryptographic hash. See the following
diagram for a depiction of this structure [8].

Figure 4.2: dm-verity hash table [8]

This is very convenient because the kernel doesn’t need to compute the hash for the whole content
of the device to assess its integrity. When a block is read, just the hash of that block will be computed
and compared with what there is in the hash tree, all the way to the root hash, which is the root of
trust in this scheme.

As we have seen in Section 4.1, sxverity is used to verify some of the partitions that reside in the
persistent memory, this is to prevent persistent exploits. But as we’ll see in Section 10.1, it is also used
to verify software updates for the dish. Thus, it is a critical component for the overall security of the
device.

Figure 4.3: sxverity image structure

In Figure 4.3 you can see the structure of an
sxverity image. It is composed of a header1, which
contains:

• The magic bytes "sxverity"

• The version and some flags indicating which al-
gorithms have been used for signing and hash-
ing

• The root hash, which indirectly covers the whole
payload (through the hash tree)

• The public key that has been used to sign the
image

• The signature of all the fields above, using an
elliptic curve (ED25519)

1The header is repeated 4 times, possibly signed with different public keys
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Figure 4.4: Flow diagram of the sxverity verification process

The verification and mount process made by the sxverity binary boils down to the procedure
shown in Figure 4.4. This will be discussed further in Section 10.1 when we’ll talk about fuzzing the
software update process, which is internally using sxverity.

5 Boot procedure
With the same technique used in Chapter 4, we can also write in the persistent storage, but a
modification made to the software stored in that memory, at any level, will be detected and will cause
the device to fail. This is thanks to a chain of trust, that protects the integrity of what is being executed
from the very first bootloader to userland processes. The integrity of the components is checked at
multiple stages and in multiple ways, in this chapter, we will see an overview of this process, starting
from the bootloader to the full-fledged operating system running at EL1 (i.e. Linux).

5.1 Bootloader chain
As for every cryptographic system, there has to be a Root of Trust (RoT), i.e. a component of the
system that can be trusted and upon which is based the security of the whole system and from which
the Chain of Trust (CoT) is built. If the RoT is compromised, the whole chain (i.e. the system) is
compromised as well. In this case, the RoT is the internal read-only memory (ROM) of the micro-
controller, which contains the first bootloader stage (BL1) and the public key with which the next
bootloader stage is signed.

Early boot stages are using ARM TF-A [1] which unfortunately doesn’t come with a GNU-like
license, thus modifications made by SpaceX are not publicly available. By reversing the compiled code
found in the eMMC and comparing it with the "base" version of ARM TF-A, we were able to analyze
it easily. Then, the last bootloader stage is U-Boot [31] which will load and boot the Linux kernel,
which are both using an open source license that forced SpaceX to publish their changes. Here is a
detailed description of each stage

• BL1, part of ARM TF-A and stored in the internal ROM, is executed at exception level 3 (EL3),
in an internal (safe) RAM. It will install its exception handler that will function as a temporary
secure monitor and will then load BL20 from the eMMC, verify its integrity using the key stored
in the ROM and jump to its entry point.

• BL20, part of ARM TF-A and stored in the bootfip section of the eMMC, is executed in
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secure exception level 1 (EL1S). It is in charge of performing some architectural initialization
and loading the next bootloader stage (BL21), verifying its integrity and executing it.

• BL21, part of ARM TF-A and stored in the fip section of the eMMC, is executed at EL1S. This
stage is in charge of loading and verifying the integrity of BL31 and BL33. Once this is done, it
will notify the secure monitor, which at the moment is BL1, that will execute BL31.

Listing 5.1: Secure Monitor call

bl_ep_info = load_BL31_and_BL33();
SMC_call(4, bl_ep_info, 0, 0, 0, 0, 0, 0);
// From ARM TF-A source code:
// smc(BL1_SMC_RUN_IMAGE, (unsigned long)next_bl_ep_info, 0, 0, 0, 0, 0, 0);

• BL31, usually called "trusted firmware" is part of ARM TF-A and stored in the fip section of
the eMMC, is executed at EL3. It will install its exception handler replacing the one installed
by BL1, becoming the new secure monitor which will live throughout the whole execution of the
kernel. After this, it will execute BL31, which has been loaded and verified by BL21.

• BL33, usually called "untrusted firmware" is based on U-Boot and stored in the fip section of
the eMMC, is the first stage that is executed in the normal world, more specifically at exception
level 2 (EL2). This stage is in charge of loading the FDT from storage, performing additional
architectural initializations, loading the Linux kernel and its ramdisk and finally starting the
kernel in EL1 (normal world).

• Linux, which isn’t a bootloader stage, runs at EL1 in the normal world and it’s stored in the
linux section of the eMMC. During the boot process, it will load and check the runtime package,
using sxverity, which is stored in the sx section of the eMMC and contains all the runtime
binaries that will be executed at Exception Level 0 (EL0) in the normal world. At this point,
the situation is the following: BL31 is running at EL3 as a secure monitor, and the Linux kernel
is running at EL1 in the normal world and will handle processes running at EL0. There isn’t
any Trusted operating system running at secure EL1, thus no trusted applications are running
at secure EL0.

Figure 5.1: Boot chain
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Figure 5.1 shows this process graphically. From this, it’s clear that tampering with any component
along the chain would be detected by the previous stage and the boot process would be interrupted.
Thanks to this it is very difficult for an attacker to execute code on the device, even when having
physical access, and it is even more difficult to install persistent code, i.e. code that survives a reboot.

5.2 I/O initialization
Interacting with a black box device isn’t usually an easy task, and for this device, it has been particu-
larly difficult. Gaining root access to the devices has been a big part of my work, in Chapter 6 we will
describe how we tried to do it, by using a hardware attack. This is an overview of the possible ways
we could interact with the device.

5.2.1 UART
As we have seen in Chapter 3, the device is equipped with a serial port that uses the Universal
Asynchronous Receiver/Transmitter (UART) protocol. This type of port is usually used for debugging
purposes, but by connecting to it we didn’t receive any output nor we were able to send any input. It
is known that previous versions of the software were printing debug messages through this interface,
but a software update has disabled it [28]. This has been done by blowing an eFuse and adding a
check in every boot stage. As explained in Section 4.1, eFuses are accessible in the Linux userland by
interacting with a file driver. But at the bootloader level, they are accessed through Direct Memory
Access (DMA) at addresses starting from 0x22400000. Each bootloader stage will enable or disable
the UART interface by checking a particular eFuse, at address 0x22400008. In Listing 5.2 are shown
some pieces of the code from BL20 that perform these operations.

Listing 5.2: BL20 io setup

void init_uart(unsigned long address, int clock, int baud_rate);
void arm_io_setup() {

//...
if (read_uart_fuse() != 0) {

enable_uart();
}
//...
init_uart(0x8850000, clock, 0x1c200);
//...

}

uint read_uart_fuse() {
return *((unsigned int *)0x22400008) >> 0x1f ^ 1;

}

void enable_uart() {
*((unsigned int *)0x8200000) = *((unsigned int *)0x8200000) & 0xfffffff8 | 1;
*((unsigned int *)0x82000a0) = *((unsigned int *)0x82000a0) | 1;

}

5.2.2 Development hardware
SpaceX developers have to be able to debug the hardware and the software running on it, and they
do it by using development hardware. The software knows it is running on development or production
hardware, again, by reading an eFuse which is only blown on production hardware. Listing 5.3 shows
a script used by programs running in the OS to check if the device is production- or hardware-fused.
The same check is made in boot stages by directly reading from memory (DMA).

Listing 5.3: /bin/is_production_hardware

#!/bin/sh

# is_production_build.sh
# Wrapper to determine if Catson board is production fused.
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set -e

fuseFile="/sys/devices/platform/soc/22400000.catson_fuses/fuse_map"

if [ -e $fuseFile ]; then
fuseMap=$(cat $fuseFile)
if [ $(( fuseMap & 0x80 )) -eq 0 ]; then

echo "1"
else

echo "0"
fi

else
# Default to the more secure option
echo "1"

fi

Among all the differences between development and production software, the most interesting
to us is shown in Listing 5.4, in which the script sets a root password. The hashed password is
tSXNnW65X1Er (DES Hash), which corresponds to the password falcon. When the root password
is set, it is possible to log in as root through the serial console (if enabled) or through SSH.

Listing 5.4: /bin/setup_console

#!/bin/sh

# start_console
# Wrapper to launch serial console.

set -e

# Report if development login is enabled over the serial console.
echo -n "Development login enabled: "
if [ "$(is_production_hardware)" -eq 0 ]; then

echo "yes"
sed -i -e ’s/^\(root:[^:]*\)/root:tSXNnW65X1Er./’ /etc/shadow

else
echo "no"

fi

6 Fault injection attack
As we have seen in Section 5.2, it is not easy to interact with production-fused hardware, let alone

gain root access to it. This chapter describes an attack that has been developed by a research group
at KU Leuven, which aims to execute arbitrary code from the early bootloader stages, by trying to
skip a signature check, to enable UART output and SSH access by tricking the device into thinking it
is not production-fused.

6.1 Introduction to the attack technique
Every hardware component is using some physical properties to store, transfer or manipulate data.
These physical properties are influenced by the environment they are working in and they are usually
designed to resist normal circumstances (i.e. temperature, magnetic fields, etc.). But even under
normal circumstances, devices can experience some errors, thus protections have been implemented
both at the hardware level (e.g. CRC and shields in memories, voltage regulators, etc.) and software
level (e.g. error-correction mechanisms, redundant checks, etc.). Fault injection is an attack technique
in which the attacker stresses the environment in which the component under attack is working on
purpose, trying to cause the component to fail or to behave in unexpected ways. There are multiple
ways to perform hardware fault injection, such as:
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• Power/Clock Glitch Fault injection (PGFI), in which you inject a fault by altering the clock’s
frequency or power supply in the corresponding pin of the chip.

• Light/Laser Fault injection (LFI), in which you inject a fault by inducing a light pulse on the
back side or front side surface of the silicon dice.

• Electromagnetic Fault injection (EMFI), in which you inject a fault by applying an electromag-
netic pulse near the surface of the chip.

• Body Biased Fault injection (BBFI), in which you inject a fault by applying a forward or reverse
bias at hundred of mV to the substrate of the chip.

Each one of them requires different access to different elements of the chip, some of them are more
precise and some of them are more difficult to execute [6].

6.2 Attack strategy
As shown in Section 5.1, every software component is verified before being executed, by constructing
a Chain of Trust (CoT), as shown in Figure 6.1.

Figure 6.1: Chain of Trust

Since we cannot tamper with the Root of Trust (i.e. BL1), the Chain of Trust has to be broken to
be able to execute some arbitrary code. This can be done by trying to glitch the very first signature
check in BL1 and by patching any other successive check, as shown in Figure 6.2. The chosen attack
by Lennert was Power glitch fault injection (or Voltage fault injection), which consists in injecting a
different Voltage (higher or lower) to the chip exactly when the signature is being checked.

Figure 6.2: Broken Chain of Trust

The injection must be extremely precise to skip the right instruction(s), so we have to find a way
to synchronize with the device, and doing this by hand would be impossible. In Sections 6.4 and 6.5
we will show how to solve this problem.

6.3 Firmware patching
In the previous section, we mentioned firmware patching, this section will show what exactly has to
be patched to perform the attack. First of all, we need to understand what we want to change in the
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firmware after which we will know what else needs to be patched in order not to break any signature
check. In our case, we want the operating system to think it is a development device (1), so a patch
has to be made in the FIT section of the eMMC, and since this section is almost at the end of the chain
of trust, we need to patch every previous signature check (3), as shown in Figure 6.2. Then we also
want to re-enable UART output (2), to have some feedback on the outcome of the attack, otherwise,
we would need to wait for the main OS to boot and try to connect through SSH just to know if the
attack worked. Following is a description of every patch mentioned above.

1. The first patch is the easiest one since every process in the Linux userland is using the same
bash script to check whether the hardware is production fused, we just need to edit that script.
It can be found in the ramdisk, at /bin/is_production_hardware (shown in Listing 5.3),
and can be patched by adding the following lines at the beginning of it.

Listing 6.1: Patch for is_production_hardware script

echo "0"
exit 0

Then, the ramdisk needs to be repacked using cpio, the whole FIT image needs to be repacked
using the tools provided by U-Boot and finally, ECC data has to be added, by using the ecc
binary that can be found in the ramdisk itself.

2. The second patch, that enables UART output, involves every boot stage since the UART interface
is re-initialized in each stage. As seen in Listing 5.2, the check is made by calling the function
read_uart_fuse. We can either patch the function to always return a positive value or patch
the function call. In Figure 6.3 you can see the patch made in BL20, this has to be done for
every bootloader stage. Then, each stage has to be packed using fiptool.

Figure 6.3: Patched UART initialization in BL20 image

3. Finally, the most important set of patches are the ones for skipping the signature verification
of successive stages. By reversing the bootloader images and comparing them with ARM TF-A
source code, we identified where the signature verifications happen. It is enough to skip them
completely, as shown in Figure 6.4.

Figure 6.4: Patched signature verification in BL20 image
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For the attack to be successful it is necessary to understand exactly how and when the integrity of
BL20 is verified. Since we don’t have the compiled BL1, we need to rely on the available source code
from ARM TF-A and assume that the check is implemented in the same way as the other bootloader
stages. Every image comes with a certificate, containing the hash of the image itself and a signature
for the hash. The check happens in two steps:

1. First the signature is checked for the provided hash;

2. Then the hash is recomputed for the current image and is compared with the provided one.

The glitch can happen in one of the two steps, as long as the other step is valid. So, we either:

1. can patch the hash of BL20 with the newly computed one (including our patches) and glitch on
the signature check;

2. or we can leave the original hash which will make the signature valid, and glitch on the hash
comparison.

We decided to go with option number 1, in Listing 6.2 you can see the bash script we’ve implemented
to patch the hash with a newly computed one.

Listing 6.2: Script that updated the hash in the patched BL20 image

HASH_OFFSET_IN_CERTIFICATE=80
CERTIFICATE_OFFSET_IN_FIP=136
HASH_OFFSET_IN_FIP=$((HASH_OFFSET_IN_CERTIFICATE+CERTIFICATE_OFFSET_IN_FIP))
# Compute and patch the new hash
sha512sum $PATCHED_IMAGE | \

cut -d ’ ’ -f 1 | \
xxd -r -p - | \
dd of=$1 bs=1 seek=$HASH_OFFSET_IN_FIP status=progress conv=notrunc

After applying these patches and repacking the whole firmware image, the technique discussed in
Section 3.2 can be used to write the updated image in the persistent memory of the device.

6.4 Attack timing
The fault injection has to be extremely precise for the attack to work, thus it is not feasible to do
it manually and/or randomly. A way to synchronize the fault injection with the device is needed
and since BL1 does not produce any output on the UART interface, which would be the optimal
synchronization method, we need to use something else. Since we have already soldered some jumpers
on the eMMC SDIO interface, this one can be used to synchronize. More specifically, we used the
D0 (Data line 0) pin, by capturing some traces using a logic analyzer with both the original and the
patched firmware. By looking at the differences in the traces, and where the device stops reading in
the case of our patched firmware, we have identified where the signature check fails and by counting
the rising edges of that data line, until the selected point in the trace, we had a reasonable precision
in identifying when the CPU is making the check, by just passively reading from that test pin. In
Figure 6.5a you can see the whole captured trace up to the point where the signature verification is
performed and in Figure 6.5b is shown how to count the number of rising/falling/total edges, which
has been blurred not to disclosed exact attack parameters.

(a) Logic Analyzer trace

(b) Edges count

Figure 6.5: eMMC D0 capture during boot
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In Figure 6.6a you can see the range between the end of the first read and the beginning of the
second one, made only when the signature verification is successful, from Figure 6.6b you can see that
the time between the two read operations is around 10 milliseconds, which is little enough to "brute
force" (i.e. inject the glitch at random times during that time interval).

(a) Logic Analyzer trace

(b) Time range

Figure 6.6: eMMC D0 capture during boot, zoomed in

6.5 Modchip
To perform the attack, we need something that:

1. Turns on the device.

2. Reads from the D0 eMMC data line, counting rising edges until the trigger value is reached.

3. Performs the Voltage fault injection.

4. Detects whether the glitch was successful (i.e. the signature verification was successfully skipped).

5. Reboots the device and goes back to step 2 if the glitch was not successful.

Steps 1 and 5 can be achieved by setting a high or low value on the RST test pin of the CPU,
which is shown in Figure 6.7a. Step 4 can be achieved by reading from the UART interface since we
have patched the BL20 bootloader to enable the interface and print debug messages to it, so if we see
something on that interface this means that the attack was successful. Step 3, the trickiest one, needs
to be performed through the Vin pin of the CPU, but as seen in the introduction of this section, some
hardware protections have been implemented to prevent errors in case of random interferences in the
power supply. In this case, some decoupling capacitors have been put on this line, to stabilize the
input voltage, thus we have to physically remove this protection for the attack to succeed.

(a) Modchip picture from COSIC research group [29]

(b) Our modchip mounted on the round User
Terminal

Figure 6.7: Modchip designed by KU Leuven COSIC research group

Luckily, the research group at KU Leuven designed a modchip that does all this and fits perfectly
on the round dish. The modchip mounts an RP2040, a microcontroller chip designed by Raspberry
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Pi, and some interfaces to interact with the User Terminal and the controlling machine. It can be
programmed to trigger on the D0 eMMC data line and send some pulses through the MOSFET driver,
which disables the decoupling capacitors and shorts the SoC core voltage power supply to ground
[29]. The original modchip is shown in Figure 6.7a. Thanks to this, we printed the PCD design and
assembled our modchip, and then mounted it on the User Terminal. For more detailed instructions on
how to mount it and how to assemble it, head to the GitHub page of the COSIC research group (link
in references [29]). Figure 6.7b shows our modchip mounted on the dish.

6.6 Results
Unfortunately, when dealing with this kind of attack, a lot of things can go wrong, and burn some
components of the board. Moreover, since the PCB schematics are not publicly available, it is very
hard to find out what exactly is broken and fix it. This is what happened to us two times, the first
one the device bricked while uploading the patched firmware, and the second one while performing
the fault injection attack through the modchip. Due to these complications and time constraints, we
were not able to get a third device so we gave up with this attack. Further dynamic testing has been
performed by developing an emulated environment in which we could execute some components of
the runtime, as shown in Chapter 8. Additionally, the SpaceX security team accepted us in their bug
bounty program and gave us a new dish (Version 3) with root access to it. But again, due to time
constraints, we weren’t able to work much on that device.

7 Runtime
In this section, we will discuss what happens after the bootloader chain, starting from the Linux’s init
script to the processes that handle the runtime of the User Terminal.

7.1 Linux boot
U-Boot (BL33) is in charge of preparing the environment for Linux to boot, and then launching the
kernel. The command line U-boot uses to launch the kernel contains some useful information, such
as the path to the init script (rdinit=/usr/sbin/sxruntime_start) and how the eMMC is
partitioned (blkdevparts=mmcblk0:0x100000@0x00000000(BOOTFIP_0),...), as shown in
Section 4.1. Disk partitioning uses the embedded device command line partition parsing kernel option,
which adds support for reading block device partition table from the kernel command line [5].

7.1.1 Init script
The init script, in Linux, is the first process that is started by the kernel and has usually a process
identifier (PID) equal to 1. Its main task is to start all the other runtime processes that are needed for
the system to be useful and remain in execution until the system is shut down. It will be the "oldest"
ancestor of any other process and is also usually used to start, stop and configure daemons by the
user, once the system is up and running. The most common init script you can find in end-user Linux
distribution is systemd, which is a collection of tools to manage the whole runtime of the system (e.g.
systemctl), among which there is also the init script.

SpaceX’s people like to implement their software, in fact, they also have implemented their init
script. sxruntime_start uses a custom formatted configuration file, which contains the instructions
on which processes to start, how to start them and in which order.

Listing 7.1: /sx/local/runtime/dat/common/runtime

1 #######################################
2 # Create directory with rw permissions for all users. Copy temporary config file
3 # to new partition if tmp cfg exists.

27



4 #
5 # Depends on mount_dish_cfg being successful.
6 # This is so user_terminal_frontend can write to the dish_cfg partition.
7 #######################################
8 proc /bin/sh
9 alias make_dish_cfg_dir

10 startup_flags wait_on_barrier barrier
11 custom_param /sx/local/runtime/bin/dish_cfg_post_setup.sh
12 custom_param /tmp/dish_cfg_setup_failed
13 custom_param /mnt/dish_cfg/all
14 custom_param /tmp/config
15
16 #######################################
17 # user terminal frontend
18 #
19 # Wait until dish config partition is set up before launching.
20 #######################################
21 proc user_terminal_frontend
22 apparmor user_terminal_frontend
23 start_if $(cat /proc/device-tree/model) != ’spacex_satellite_starlink_transceiver’
24 startup_flags wait_on_barrier
25 user sx_packet
26 custom_param --log_wrapped

Listing 7.1 shows a fragment of one of the configuration files that are used by the init script. These
files are not just a list of programs to start, they are a bit more advanced, you can for example,
define relationships between processes (e.g. wait for P1 before starting P2) or define conditions to
be evaluated before starting a process. What follows is a detailed explanation of what this fragment
means.

• The proc keyword defines the beginning of a process definition and takes the path of the program
as an argument (lines 8, 21).

• The alias keyword sets an alias for the current process so that the process name is more
explanatory and also creates a symbolic link to the process in /tmp/runtime/<alias> ->
/proc/<pid> (line 9).

• With the startup_flags keyword it is possible to set multiple flags:

– barrier sets a barrier that will be used by the wait_on_barrier flag.
– wait_on_barrier waits for the last process marked with the barrier flag to finish

before starting the current one.
– wait simply waits for the current process to finish before continuing with the next one.
– no_logger disables logging for the current process.

• The apparmor keyword chooses which apparmor profile to use for the current process (line 22).

• The start_if keyword evaluates a bash boolean expression to decide whether to start the
current process or not (line 23).

• The user keyword will change the Linux user who is executing the binary (line 25).

• The custom_param will pass additional command line parameters to the process (lines 11-14,
26).

The two configuration files that are parsed by the init script can be found at /etc/runtime_init
(ramdisk) and /sx/local/runtime/dat/common/runtime (runtime image). The first one han-
dles system-level services and configurations, such as mounting partitions (e.g. the runtime), and
setting up the network, the console and the logger service. The second one, instead, handles more
high-level processes and configurations, such as starting all the processes contained in the runtime
image and initializing encrypted devices.
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7.2 System configuration
To understand what every process does and how it interacts with the underlying system and hardware,
it is useful to analyze how the system is configured. This analysis is also needed for the next Chapter,
in which we’ll set up an emulated environment in which we’ll perform some dynamic analysis and
testing.

7.2.1 CPU scheduling
The init described in Section 7.1 doesn’t just start processes following the mentioned configuration files,
it also assigns priorities and specific CPU cores to those processes. This information is not included in
the same configuration files, another one is parsed by the process which will then instruct the Linux
kernel to schedule processes in specific ways. This file is also heavily documented, in Listing 7.2 you
can see the header, which already contains a lot of useful information.

Listing 7.2: /sx/local/runtime/dat/common/runtime_priorities

#
# Associate processes into rules with explicit priority, scheduling policy,
# and CPU affinity.
#

############################
# System Information
############################
#
# The user terminal phased-array computers are Catson SoCs with a quad-core
# Cortex-A53.
#
# We dedicate one core to control, while leaving the other three to handle
# interrupts and auxiliary processes.
#
# CPU 0: Control process.
# CPU 1: Lower-MAC RX process.
# CPU 2: PhyFW and Lower-MAC TX process.
# CPU 3: utility core - interrupts, auxiliary processes, miscellaneous

After this, the file contains a detailed description of how to use/read this configuration file, and
finally the set of rules that will be parsed by the init script, which will then instruct the kernel to
schedule each process on a particular core, using a particular scheduling algorithm, with a predefined
priority and so on. As an example, Listing 7.3 shows how priorities are assigned, the format of rules
and, as an example, the rule for the "control" process.

Listing 7.3: /sx/local/runtime/dat/common/runtime_priorities

# Process priorities should be allocated as follows:
#
# 80-99: critical kernel processes and phyfw
# 60-79: time-critical flight software
# 40-59: normal kernel processes - default 40 (see "catch-all" at bottom)
# 1-39: normal userspace processes, deprioritized kernel processes
# 0: non real-time software
#

############################
# Using this file
############################
#
# Format per line is: <flags>:<sched>:<prio>:<affinity>:<regex>

:f:70:0x1:user_terminal_control

From the rule above, we can understand that a process named user_terminal_control is run
with the following properties:
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• Affinity: 0x1 → it will run on the first core (processor #0). The meaning of the affinity value
indicates on which CPUs the process is allowed to run, by taking the binary representation of
that number and selecting only the positions in which there is a one. As an example:

0x1 = 20 → CPU #0
0xD = 20 + 22 + 23 → CPUs #0, #2, #3

Figure 7.1: From affinity to CPU indexes

• Priority: 70→ it will have a priority value of 70, which will be used by the scheduling algorithm,
and since it falls in the 60-79 range, we know it is a "time-critical flight software".

• Scheduler: f → it will use the First in First out (FIFO) scheduling algorithm. Other possible
algorithms are batch (’b’) and round-robin (’r’).

We will talk more about this and other processes in Section 7.3.

7.2.2 Filesystem & Mount points
The root filesystem structure is a classical Linux structure, so we’ll just focus on SpaceX-specific parts
of the filesystem. First of all, the root filesystem is copied in RAM by the last bootloader (U-Boot,
BL33), and is mounted at /. As seen in the introduction to this chapter, the eMMC is partitioned
by the kernel by using a command line option. Partitions can be accessed by the system through the
files /dev/blk/mmcblk0pN where mmcblk0 is the name of the eMMC and N is the partition index,
starting from 1. For convenience, a script will then create some symbolic links to these partitions to
use a more explicit name, as shown in Listing 7.4.

Listing 7.4: /bin/make_ut_blks

# [...]
ln -s /dev/mmcblk0p1 /dev/blk/bootfip0
ln -s /dev/mmcblk0p2 /dev/blk/bootfip1
ln -s /dev/mmcblk0p3 /dev/blk/bootfip2
ln -s /dev/mmcblk0p4 /dev/blk/bootfip3
# [...]

Since almost every partition is duplicated, another script will then create additional links in the
folders /dev/blk/current and /dev/blk/other, the first one containing the partitions that are
currently being used by the system and second one containing the other ones, that will be used in case
of a software update. The system knows which partitions have been used for the current boot by look-
ing in /proc/device-tree/chosen/linux_boot_slot which is populated by the bootloader.

Then, the runtime partition is unpacked using sxverity (see Section 4.2.2) and the content is
extracted to /sx/local/runtime. This partition contains two folders:

• bin contains binaries and executable scripts
• dat contains a lot of additional data like AppArmor rules, hardware-specific configurations and

generic configuration files, such as dat/common/runtime which is the (second) configuration
file used by the init script.
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After these operations, the root filesystem is remounted with the ro (read-only) flag. Additional
partitions are then mounted, such as:

• /dev/blk/current/version_info on /mnt/version_info (through sxverity).

• /dev/blk/dish_cfg on /mnt/dish_cfg (through LUKS).

• /dev/blk/edr on /mnt/edr (through LUKS).

7.2.3 Networking
Since the device we are analyzing is a network device, this section is expected to be the most interesting,
but due to the problems we had with gaining root access to the device and the difficulties encountered
in reverse engineering lower-level binaries, the network configuration of the dish is not entirely clear
at the moment of writing. In Listing 7.5 you can see the output of the ip command that lists all the
interfaces that are UP, with their corresponding addresses.

Listing 7.5: Output of the ip command on the physical device

[root@user1 ~]# ip a show up
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen

1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
inet6 ::1/128 scope host

valid_lft forever preferred_lft forever
2: eth_user: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN

group default qlen 1000
link/ether 26:12:ac:1a:80:01 brd ff:ff:ff:ff:ff:ff
inet 192.168.100.1/24 scope global eth_user

valid_lft forever preferred_lft forever
inet 34.120.255.244/32 scope global eth_user

valid_lft forever preferred_lft forever
inet6 fe80::2412:acff:fe1a:8001/64 scope link

valid_lft forever preferred_lft forever
3: eth0: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP> mtu 1500 qdisc mq state UP group

default qlen 1000
link/ether 26:12:ac:1a:80:01 brd ff:ff:ff:ff:ff:ff

6: eth_prime@eth_user: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
group default qlen 1000
link/ether 26:12:ac:1a:80:01 brd ff:ff:ff:ff:ff:ff
inet 172.26.128.1/12 scope global eth_prime

valid_lft forever preferred_lft forever
inet6 fe80::2412:acff:fe1a:8001/64 scope link

valid_lft forever preferred_lft forever
7: sx0: <POINTOPOINT,NOARP,UP,LOWER_UP> mtu 1300 qdisc pfifo_fast state UP group default

qlen 500
link/none
inet 172.16.10.2/24 scope global sx0

valid_lft forever preferred_lft forever
inet6 2620:134:b000:bdf:9cf4:8e0::/48 scope global

valid_lft forever preferred_lft forever
inet6 fe80::a036:3c0b:cc0e:fdc/64 scope link stable-privacy

valid_lft forever preferred_lft forever

The only thing we are sure about is that eth_user is the interface that faces the Wi-Fi router,
hence it is the one receiving the traffic coming from the user. But other than that, we couldn’t
understand how the traffic was further routed and forwarded to the RF hardware. Even tcpdump
fails to capture those packets, thus we guess that it is using a network stack that is not the one included
in the Linux kernel.
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7.3 Daemons
After the elaborate boot procedure and system configuration we finally reach a state in which some
processes are running, each one with a unique task, to provide the user with the service the device is
built for, i.e. a satellite internet connection. As you may guess, many things happen in the background
to ensure a stable enough internet connection, such as sending and receiving traffic to and from satel-
lites, choosing which satellite to connect to, continuously changing satellite when it has moved too far
without disrupting the connection, handling user requests coming from the mobile application, etc...
Furthermore, these processes need to continuously communicate with each other to synchronize and
cooperate, and with Starlink’s cloud services for backend functionalities.

The only sources of information about these processes and how they work are the binaries them-
selves, so we had to reverse-engineer them to find out their purpose in the system. All of them a
stripped, meaning that they do not contain any symbol (e.g. function names), most of them are
C++ binaries, some of them are even statically linked and one of them is a go binary. Reversing
C++ binaries is quite a challenge, due to the complex low-level implementation of classes, particu-
larly when inheritance or generic types are used. Moreover, without any symbols, it is really difficult
to understand the high-level structure of the code. On top of that, in the case of statically linked
binaries, you also need to reverse library functions. On the other hand, reversing the go binary was
much easier, thanks to the debugging symbols included in the binary that are needed by the go runtime.

7.3.1 C++ binaries
In this section, we will describe the methodology used for reversing the C++ binaries, with a brief
description of the most important ones. Ghidra, the open-source software from NSA, has been used
for reverse engineering analysis, along with some plugins and other software that we will mention in
this chapter. From a first look at the binaries, it became clear that we were handling C++ binaries,
and from a quick analysis of the printable strings found in the binaries, we could also understand that
a lot of code has been shared among all the runtime utilities.

Library functions identification

The first problem we tried to solve was to identify the libraries that were statically linked to the
binaries under study because otherwise, the analysis would have been impossible to do in a reasonable
time. To do that, we used the binary diffing technique, which consists, given two compiled programs,
of identifying common functions in the two binaries. For the diffing to be successful we need the
libraries, compiled with the same version of the compiler, with the same options and for the same
architecture, so we either have to find them somewhere or recompile them ourselves. Since a lot of
code is shared among the binaries, it is likely that also the library the processes are using are the same
ones. And since there are some dynamically-linked binaries, the dynamically-linked libraries have to
be somewhere in the filesystem. The libraries were stripped from symbols as well, but the exported
functions (the ones you call from the program you are linking it to) have to be present. So we tried
to diff the statically linked binaries with the available libraries (such as libc, libcrypto, libssl,
etc.) using BinDiff, an open-source binary diffing tool.

Figure 7.2 shows the result of diffing a statically linked binary (connection_manager) with a very
common library (libc). In this case, the tool has been able to match around 1800 functions from the
libc, among which there are plenty of false positives, but also some true positives.

To include these results in Ghidra to proceed with the static analysis, a plugin can be used:
BinDiffHelper. In our case, though, it didn’t help because it was crashing while importing the symbols
and, most importantly, it does not provide a way to filter out false positives. BinDiff’s results include
also some statistics about every matched function, such as the similarity and the confidence. These
values can help us understand if the match is a true or a false positive, so we can use them to filter
out bad results before importing them into Ghidra. Since this cannot be done using existing tools,
we’ve implemented a Python script for Ghidra that can import symbols from BinDiff’s outputs, while
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Figure 7.2: bindiff of connection_manager vs libc

also giving the user the capability of filtering matched functions by setting a lower threshold for the
confidence and similarity or by defining more complex filters directly in Python [25]. This technique is
not perfect because even if the compiled code of two functions is almost identical, it is not guaranteed
that they are the same function, and the same function could be compiled differently in the two binaries.

Design pattern and related challenges

After recovering some symbols using the aforementioned technique, we started analyzing the binary in
Ghidra. Since it is a C++ binary we also tried recovering information about classes and their methods.
Some Ghidra plugins have been tested but we weren’t able to find one that worked well. Most of them
were just able to recover class names and namespaces (i.e. demangling), but none of them was capable
of re-constructing the data types and resolving method calls. This is mainly because when using
inheritance, multiple inheritance, virtual methods and generic types, the underlying structures that
make all these features work are very complicated, and it is often difficult to understand statically which
method will be called and what kind of subclasses we are dealing with. Moreover, it looks like these
programs implement the State Machine Design Pattern [30], which heavily uses the aforementioned
features of Object Oriented Programming. Dynamic analysis is often required to fully understand
what the program does, which wasn’t possible on-device until the very end of my research period, and
was only partially possible in the emulated environment (see Chapter 8). Due to these reasons, the
static analysis of C++ binaries did not produce many results, and thus we focused on the go binary,
which will be discussed in the next section.

Overview of C++ binaries

Here is anyway a brief overview of the studied binaries, using the little information we could gather
from them, by using an OSI-like structure of the network stack.

• phyfw (Physical Firmware, perhaps) handles the physical layer of the satellite communication,
which includes modulation/demodulation of RF signals.

• rx_lmac and tx_lmac (rx/tx lower Medium Access Control, perhaps) fall in the data link
layer, and handle the physical access to the medium, separately for receiving and transmitting.

• umac (upper Medium Access Control, perhaps), could represent the network layer. It handles the
access to the medium, at a higher level, and coordinates between the transmission and reception
of frames. It may also be in charge of choosing which satellite to connect to.

• connection_manager could represent the transport layer and, if it’s the case, it handles state-
ful connections between the dish and satellites (or gateways directly, abstracting the underlying
infrastructure), in which the traffic will be exchanged.
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• ut_packet_pipeline is probably used to create an encrypted tunnel in which user traffic will
be exchanged using the secure element on the dish for handshakes. This could be associated with
the known protocols such as TLS, DTLS, IPsec or, again, a custom one.

Other than these network-related processes there also are some processes that handle system teleme-
try, software updates, system health status and outage detection/reporting and finally a "control"
process that acts as an orchestrator for all the other processes.

7.3.2 Go binary
One of the runtime processes is a go binary, which is an open-source (compiled) programming lan-
guage from Google that claims to provide memory safety guarantees and built-in concurrency, thanks
to its runtime, which is included in every go program and handles the whole program status, garbage
collection and safety checks during the execution while having a small impact on performance.

Figure 7.3: Golang An-
alyzer analysis result

Go binaries are statically linked and they include the go run-
time, so they are pretty big, but luckily they also include sym-
bols that are used by the runtime for comprehensive runtime er-
ror reporting, which includes function names, source code line num-
bers and data structures. All this precious information can be
recovered using a plugin for Ghidra called GolangAnalyzer which,
as you can see in Figure 7.3, was quite effective. The ex-
tension also recovers complex data types and creates the corre-
sponding C-like structures in Ghidra, which is extremely useful
when working with an OOP language. Additional manual analy-
sis is needed because of the custom calling convention used by Go,
but after this, the resulting disassembled C code is easily read-
able.

The binary we are analyzing is user_terminal_frontend, and its main task is acting as a
back-end for the mobile application and the web interface accessible to the users. Thus, through this
process, the user can edit some basic configurations of the dish and get some information from the
dish such as statistics about the connection speed or an obstruction map in which (s)he can see if the
antenna has a good visibility of the sky. Communications with the mobile app and the web interface
use Google’s RPC (gRPC) framework, but we’ll dive into this in Chapter 9. Thanks to this process
we’ve also understood some other components that are implemented also by C++ binaries, such as
general configurations and inter-process communications (IPC) (see Section 9.2).

7.3.3 Architecture
To summarize this section, in Figure 7.4 you can see a sketch of the architecture of the runtime (not
complete), in which you can see that processes at the bottom, "closer" to the hardware, are statically
linked, probably for performance reasons, and communicate only with the control process, while the
other ones also communicate with Starlink’s cloud services, through gRPC. In Chapter 9 we will tackle
all the communications shown by this picture in more detail. And finally, the is the go binary (which is
technically statically linked as well, but just because of the language constraint), which communicates
with frontend applications used by the user.
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Figure 7.4: Sketch of the runtime’s architecture

8 Runtime Emulation
Due to the negative results of the Fault injection attack (Chapter 6), we didn’t have access to a live
device on which to check our findings or perform some dynamic analysis. Thus, we tried to set up
an emulated environment, as similar as possible to the real device, that would be capable to execute
runtime binaries. We are emulating the entire system (full-system emulation), starting from the kernel,
using QEMU as an emulator engine. The following sections will describe every challenge we had to
deal with while setting up the environment and the final result, containing the ones we couldn’t solve.

8.1 QEMU machine hardware
The first choice to be made is which hardware we want QEMU to emulate. When you want to emulate
an IoT device using QEMU you usually look for the hardware implementation of the particular device
for QEMU, which is usually available for common, off-the-shelf devices such as Arduino, Raspberry
Pi, and less-known boards as well. The hardware implementation of our device was, of course, not
available, so we used the (aarch64) virt machine, which is the most generic one. The proper way
to emulate the whole device would have been to construct this machine specification for QEMU, as well
as implement emulators for every piece of hardware that is present on the board. The problem is that
most of the peripherals present on the device are not open hardware, and even if they did, implementing
all of them in QEMU would have been a lot of work. Instead, by using the virt machine and tweaking
the Device Tree it is much easier, at the cost of not having most of the hardware peripherals and thus
some limitations, see Sections 8.3 and 8.6.

8.2 Kernel
Another problem was the choice of the kernel to run in QEMU. We tried with the original one, extracted
from the FIT of the firmware, but that didn’t work in the emulated environment. So we decided to
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compile one ourselves. Unfortunately, the open-source version of Linux published by SpaceX is 5.10.90
[16], while the one found on the dish was 5.15.55, so we used the mainstream Linux kernel. A lot of
tweaks in the compile-time configuration had to be made for it to boot, some of them required by
QEMU and some of them required by Starlink’s software. It is possible to extract this configuration
from a compiled Kernel image, using the script extract-ikconfig from the Linux kernel repository,
which was used to find differences between the default one and the one configured by SpaceX.

8.3 FDT
As we have seen in Section 4.1, the device tree of the device not only contains information about
hardware peripherals but also data that is used by the runtime, such as public keys used by sxverity.
Additionally, the U-Boot bootloader also populates the FDT before booting the Linux kernel, by
adding, for example, which set of partitions have been used in the current boot, the name of the main
network interface and more. All this information is of course not included in the FDT set by QEMU
for the virt machine, thus we extracted this FDT, using the dumpdtb flag, and added the missing
information, as shown in Listing 8.1, which can then be recompiled using the Device Tree compiler
(dtc) and given to QEMU using the -dtb flag.

Listing 8.1: Customized FDT for QEMU

# ...
model = "spacex_satellite_user_terminal";
compatible = "st,gllcff";

chosen {
linux_boot_slot = "0";
ethprime = "eth_user";
board_revision = "rev2_proto3";
bootfip_slot = <0x00>;
boot_slot = <0x0006>;
boot_count = <0x0010>;
# ...

};

security {
dm-verity-pubkey = <REDACTED>;
# ...

};
# ...

8.4 rootfs
As the root filesystem, we used the one we extracted from the dish, with some modifications.

• Since we want to have access to the emulated dish, it must think it is a development version
so that password access is enabled, thus we patched the is_production_hardware script,
just as we have seen in Chapter 6. This could have been done in multiple ways, such as directly
editing the /etc/shadow file, or adding our public key to the SSH’s authorized_users files,
but it is more effective as we did because development hardware will also enable other debugging
features.

• We also included the extracted runtime where it would have been mounted and removed that
step from the /etc/runtime_init file so that it will skip the integrity check and we’ll be able
to also tamper with the content of that partition.

• In the /etc/runtime_init file we also have added some custom steps, for example, one that
sets up our emulated network, and one that mounts read-write partitions as emulated volumes.

Additional patches will be needed for other programs to start in the emulated environment, here is
one from Starlink software update as an example. Listing 8.2 shows a snippet of disassembled
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code from the binary that was making the process crash in the emulator and in Listing 8.3 you can
see the corresponding decompiled C code. In this case the function call to FUN_001f61e0 was failing
(returning false), and because of that the program panics. A simple patch for this kind of problem
is to just skip the check after the call, replacing the instruction with a nop (No operation), which
does nothing and continues with the normal execution of the next instruction, which in this case is the
"good" branch. The patch is shown in Listing 8.4.

Listing 8.2: Code in Starlink software update that makes the program crash in the emulator

001bf1dc 01 dc 00 94 bl FUN_001f61e0
001bf1e0 1f 1c 00 72 tst param_1, #0xff
001bf1e4 60 87 00 54 b.eq LAB_001c02d0

LAB_001c02d0:
; Here an error message is printed and panic is called

Listing 8.3: Decompiled code of Listing 8.2

res = FUN_001f61e0(var1,3);
if (res == false) {

panic("SacAbortIfNot","","","external/rocket/src/flight/sat/all/swupdate/
starlink_software_update_bin.cc",0x118,"",0);

}

Listing 8.4: Patched code

001bf1dc 01 dc 00 94 bl FUN_001f61e0
001bf1e0 1f 1c 00 72 tst param_1, #0xff
001bf1e4 1f 20 03 d5 nop

We have also included some additional software that will be used for testing purposes such as
gdbserver. But for these programs to be able to run, we either had to cross-compile them using the
same build toolchain, or cross-compile them statically. The modified root filesystem is then repacked
into a cpio image and then compressed using the script shown in Listing 8.5.

Listing 8.5: pack-rootfs.sh

#!/bin/bash

echo "Copying filsystem folder..."
# we use sudo because here because we want root to be the owner of the content
sudo cp -r rootfs _rootfs
cd _rootfs

echo "Creating rootfs filesystem..."
find . | sudo cpio -o --format=newc > ../rootfs.cpio
cd ../

echo "Compressing filsystem image..."
sudo gzip -c rootfs.cpio > rootfs.cpio.gz

echo "Cleaning up..."
sudo rm rootfs.cpio
sudo rm -r _rootfs

8.5 Persistent memory & Networking
Even though both the root filesystem and the runtime are already placed in memory when the Linux
kernel boots, a lot of processes directly access some partitions of the eMMC. So we’ve also instructed
QEMU to create a raw virtual block device, containing the original image dumped from the physical
board. But since it is not seen by the kernel as an eMMC chip, the assigned name is different from the
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one assigned by the physical device. Because of this, we had to change every reference to mmcblk0
in vda, which is the name assigned by the kernel in the emulator. Fortunately, as we have seen in
Subsection 7.2.2, the device only uses the name of the device in a script that creates some symbolic
links to every partition, so we just had to patch that script and the command line argument for the
kernel. Partitions that are mounted with write permission, are instead mapped to a folder on the host
so that it is possible to inspect their content afterward.

As for the network, it is not necessary to replicate the exact network configuration of the dish (as
it is not very clear to us), we just need to have the right interface names and internet access. This has
been done by using a tap interface, bridged to the host which will act as NAT, as shown in Listings
8.6 and 8.7

Listing 8.6: Network configuration on the host

#!/bin/bash

ifconfig $1 0.0.0.0 promisc up
brctl addbr virbr0
brctl addif virbr0 $1

ip link set dev virbr0 up
ip link set dev $1 up

ip addr add 192.168.100.2/24 dev virbr0
echo 1 > /proc/sys/net/ipv4/ip_forward
iptables -t nat -A POSTROUTING -o wlp0s20f3 -j MASQUERADE

Listing 8.7: Network configuration in the guest

#!/bin/sh

ip link set dev eth0 name eth_user
ip link set dev eth_user up
ip addr add 192.168.100.1/24 dev eth_user

route add -net 0.0.0.0 netmask 0.0.0.0 gw 192.168.100.2 dev eth_user

8.6 Results and Limitations
The resulting command line is shown in Listing 8.8. On line 5 you can see the command line arguments
that will be passed to the kernel, some of them are the same ones the bootloader sets, such as rdinit
(the path to the init script) and blkdevparts (with the modified device name). And others are
custom, like console (to set the console defined in the FDT), nokaslr (for debugging binaries more
easily). Parameters that have the sx- prefix are meant to be read by the init script, in this case, we
have set a fixed public IP address (that won’t be used) and the board’s serial number.

The arguments of qemu-system-aarch64 have already been explained in the previous sections,
without actually naming them. The ones between lines 23 and 29 set the right type of emulated
hardware, then we select the Linux kernel image (line 30), the ramdisk (line 31), we set the emulated
hard drive (lines 32 and 33), the custom device tree (line 34), the emulated network device (lines 35
and 36) and finally some shared folders for persistency among emulations.
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Listing 8.8: QEMU command line

1 #!/bin/bash
2
3 set -e
4
5 bootargs="
6 console=ttyAMA0
7 nokaslr
8 panic=5
9 ro

10 root=/dev/ram
11 rdinit=/usr/sbin/sxruntime_start
12 mtdoops.mtddev=mtdoops
13 trace_buf_size=5M
14 rcutree.kthread_prio=80
15 uio_pdrv_genirq.of_id=generic-uio
16 audit=1
17 blkdevparts=vda:0x100000@0x00000000(BOOTFIP_0),0x100000@0x100000(BOOTFIP_1),0

x100000@0x200000(BOOTFIP_2),...
18 sx-ipaddr=172.26.128.1
19 sx-serialnum=123
20 "
21
22 qemu-system-aarch64 \
23 -nographic \
24 -no-reboot \
25 -machine virt \
26 -machine type=virt \
27 -cpu cortex-a53 \
28 -smp 4 \
29 -m 2G \
30 -kernel "linux-5.15.55/arch/arm64/boot/Image" \
31 -initrd ./rootfs.cpio.gz \
32 -blockdev driver=raw,file.filename=original.img,file.driver=file,node-name=vda \
33 -device virtio-blk-device,drive=vda \
34 -dtb ./FDTs/custom.dtb \
35 -device e1000,netdev=vm0 \
36 -netdev tap,id=vm0,script=./networking/tap0-up.sh,downscript=./networking/tap0-down.

sh \
37 -virtfs local,path=./disks/dish-cfg,mount_tag=dishcfg,security_model=mapped-xattr \
38 -virtfs local,path=./rootfs,mount_tag=rootfs,security_model=mapped-xattr \
39 --append "$bootargs"

As explained in previous sections, most of the hardware is not present in the emulated environ-
ment, so every component that tries to use it will fail. Lower-level processes, such as phyfw and
[rx/tx]_lmac, whose main task is to interact with Starlink’s hardware won’t work in this environ-
ment. But also other binaries require some hardware to be present, the most common one is the secure
element, which is used in most of the cryptographic exchanges. So for those binaries to work we patched
every instruction that would make the program crash, but if the hardware is required for substantial
parts of the process, this solution is pointless. In the end, we managed to emulate, among the main pro-
cesses discussed in Section 7.3, only user_terminal_frontend, starlink_software_update,
umac and the ones related to telemetry, along with smaller processes. Further work on this topic could
incrementally add support for some peripherals of the board, hence being able to emulate more and
more processes. In Listing 8.9 you can see the console output of the final phase of the boot process in
the emulated environment.
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Listing 8.9: QEMU output

# [...]
# kernel messages and (a lot of) errors from applications
# trying to access missing hardware peripherals
# [...]

setup_console: Development login enabled: yes

SpaceX User Terminal.
user1 login: root
Password:

*
+

+ +
+ +

+ +
+ + + + + + +
+ + + +

+ + + +
+ + +

+ + +
+ + +

+ + + +
+ + + +

+ + + + + + + + + +

The Flight Software does not log to the console. If you wish to view
the output of the binaries, you can use:

tail -f /var/log/messages

Or view the viceroy telemetry stream.

[root@user1 ~]#

9 Communications
In IoT devices, communication with other devices is often a crucial function, if not the main one. This
is also the case for our device, which is basically an internet gateway and, as you can imagine, in this
case, communication between the device and the satellites is the main function of the User Terminal.
We briefly discussed the physical layer of this communication in the first chapters, but we didn’t focus
on that. On a higher layer, the communication with satellites is split into two "planes":

• The Data Plane, which contains user traffic to and from the Internet;

• The Control Plane, which contains every other kind of traffic, such as control messages between
the antenna and the satellite (e.g. Connection handshake).

But these are not the only communications happening in the device, in the following sections we will
also see how the device interacts with user front-end applications and also how the different components
inside the device communicate with each other.

40



9.1 External communications
The User Terminal heavily interacts with external devices, which can be split into two major categories:

• Devices that reside in the internal network that the dish creates, i.e. user-owned devices, which
can run front-end applications such as the mobile app or the web interface.

• All the other devices, which include satellites and backend services inside the SpaceX private
network.

These interactions use, as the application layer, Google’s Remote Procedure Calls (gRPC), which
underneath uses protobuf, and finally TCP.

9.1.1 Satellites & Starlink’s cloud services
Many binaries in the runtime need to communicate with backend services to, for example, ensure that
the user has an active subscription. All these communications happen in the Control plane, and all
the devices are in the private network of Starlink, only reachable through a User Terminal. Due to
this, we couldn’t test these interactions in the emulated environment, thus we don’t have many details
on this.

Luckily, this time SpaceX did not choose to implement a custom protocol, they are instead using
gRPC. Messages and services are defined by using the protobuf’s proto definition, which is a human-
readable representation of the format of each message and the available services that each server is
exposing. In Listing 9.1 you can see an example message, defined using the proto definition format.

Listing 9.1: A proto definition

message Person {
optional string name = 1;
optional int32 id = 2;
optional string email = 3;

}

After defining messages and services, these files are compiled using the protocol buffer compiler,
which can also generate stubs in many programming languages, such as C++, Python and Go. As an
example, in Listing 9.2 you can see a C++ snippet that makes use of the message defined in Listing
9.1. The parsing and encoding of messages is handled by the automatically generated stubs, which is
very convenient since you can share these definitions among programs written in multiple languages,
without the need of re-implementing everything from scratch, but rather by just focusing on the actual
application code.

Listing 9.2: C++ snipped that uses the protobuf stubs

int main(int argc, char ** argv) {
Person john;
fstream input(argv[1], ios::in | ios::binary);
john.ParseFromIstream(&input);
id = john.id();
name = john.name();
email = john.email();
// ...

}

This protocol is very convenient for us security researchers as well since the original message
definitions are often included in the compiled binaries for reflection, which is a feature of the
protocol with which you can "ask" a server process which kind of messages and requests it supports,
that will be sent as proto definitions. Thanks to this we could extract the original, human-readable
definitions from the binaries using the protobuf toolkit (pbtk) [11]. As an example, in Listing 9.3 you
can see the definition of a message extracted from the umac binary.
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Listing 9.3: Protobuf definition of a message extracted from the umac binary

message SatIneHandshakeRequest {
uint32 satellite_id = 1;
uint32 gateway_id = 2;
uint32 channel_id = 3;
uint32 sequence_num = 4;
uint32 interval_start_sec = 5;
string antenna_id = 6;
SpaceX.API.Common.SpaceTime.GPSTimestamp tx_deadline = 7;
uint32 mac_software_version = 8;
SpaceX.API.Common.SpaceTime.GPSTimestamp curr_time = 9;

}

Luckily, the names of messages, fields and requests are self-explanatory. The message shown in
Listing 9.3 is probably the request sent from the dish to the satellite to initialize a stateful connection,
containing which satellite we want to connect to, which gateway we want to use to reach the internet,
which radio channel we want to use, from which antenna the handshake is coming from and more. From
the information gathered from these message definitions, we could understand how the dish interacts
with backend services, such as how information about the user is gathered and how information about
available software updates is requested. But, as explained in the introduction to this chapter, we could
not test these in the emulated environment, thus we didn’t focus on this. This is also because all the
communications are using mutual authentication (TLS), by using the secure element on the dish, so
it would be very difficult to, for example, impersonate Starlink backend services to sniff the traffic or
tamper with it for exploitation.

9.1.2 Front-end applications
The communication with front-end applications is handled by the process user_terminal_frontend,
which we were able to both run in the emulated environment and reverse-engineer, thanks to the lan-
guage it has been implemented in (Go). As explained in Subsection 7.3.2, this binary is in charge
of handling the communication between the front-end applications, which are the mobile application
and the web interface. From these applications, the user can see some statistics of the device and
can change some high-level settings such as Wi-Fi credentials, reboot or stow the dish, etc. These
interactions are again using gRPC, but do not require mutual authentication. Protobuf definitions can
be gathered either by extracting them from the binary (using pbtk) or by asking the reflection server
of the process itself (using grpcurl, for example). Some tools have been implemented as alternative
front-end applications that use this protocol [18, 19]. The aforementioned applications, implemented
in Python, make use of the gRPC APIs exposed by the frontend binary, providing the user with an
alternative user interface to inspect the statistics of the dish. The authors of these applications have
probably gathered the protocol definitions from the mobile application or by using the reflection server.

Listing 9.4 shows the definition of the main service. The interesting function is Handle, which
takes a Request as an argument and returns a Response. The other function is just a wrapper to
call the Handle function using streams.

Listing 9.4: Front-end service definition

service Device {
rpc Stream(stream ToDevice) returns (stream FromDevice);
rpc Handle(Request) returns (Response);

}

In Listing 9.5 you can see the (partial) definition of the Request message, which contains a few
ids and one specific request, among the ones listed. Every inner request has its definition, with the
parameters the server needs to process the request, and a corresponding response that will hold the
result.
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Listing 9.5: Partial definition of the Request message

message Request {
uint64 id = 1;
uint64 epoch_id = 14;
string target_id = 13;

oneof request {
GetNextIdRequest get_next_id = 1006;
AuthenticateRequest authenticate = 1005;
EnableDebugTelemRequest enable_debug_telem = 1034;
FactoryResetRequest factory_reset = 1011;
GetDeviceInfoRequest get_device_info = 1008;
GetHistoryRequest get_history = 1007;
GetLogRequest get_log = 1012;
GetNetworkInterfacesRequest get_network_interfaces = 1015;
GetPingRequest get_ping = 1009;
PingHostRequest ping_host = 1016;
GetStatusRequest get_status = 1004;
RebootRequest reboot = 1001;
SetSkuRequest set_sku = 1013;
SetTrustedKeysRequest set_trusted_keys = 1010;
SpeedTestRequest speed_test = 1003;
SoftwareUpdateRequest software_update = 1033;
DishStowRequest dish_stow = 2002;
StartDishSelfTestRequest start_dish_self_test = 2012;
DishGetContextRequest dish_get_context = 2003;
DishGetObstructionMapRequest dish_get_obstruction_map = 2008;
DishSetEmcRequest dish_set_emc = 2007;
DishGetEmcRequest dish_get_emc = 2009;
DishSetConfigRequest dish_set_config = 2010;
DishGetConfigRequest dish_get_config = 2011;
// [...]

}
}

With this information, we can now interact with the server by using the grpc_cli, which comes
with gRPC and it’s a command line interface that lets you make gRPC requests; or by implementing
a client in one of the many supported languages, such as Python, after "compiling" the protocol
definition and generating the stub code for the chosen language. In Listing 9.6 you can see a simple
Python script that sends the GetDeviceInfoRequest and prints out the response.

Listing 9.6: Python script using gRPC to send the GetDeviceInfoRequest

def get_device_info():
channel = grpc.insecure_channel(TARGET)
stub = device_pb2_grpc.DeviceStub(channel)

request = device_pb2.Request(
id=1,
epoch_id=1,
target_id="unknown",
get_device_info=device_pb2.GetDeviceInfoRequest()

)

response = stub.Handle(request)
return response

print(get_device_info())

####################### Example output (from emulator) #######################
# id: 1 #
# api_version: 6 #
# get_device_info { #
# device_info { #
# id: "uta5cf81ba-115e-44a2-a62d-e189d7fe42df" #
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# hardware_version: "rev2_proto3" #
# software_version: "c36a30b4-93ac-4a14-b663-0622ef7ed944.uterm.release" #
# is_dev: true #
# generation_number: 1674091226 #
# } #
# } #
##############################################################################

There are two ways of communicating with this gRPC, either by using an insecure channel, like
Listing 9.6 shows, or by using a secure channel, which involves TLS and mutual authentication by using
certificates stored in the secure element. The mobile application and the web interface both use the
insecure channel, so the encrypted one must be used by something else. The secure channel requires a
private key which is not available in the dish, and the public key is stored in the secure element, so to
test this feature we would have to patch the program in multiple places.

Among the requests that can be made to the server, many of them are meant for front-end appli-
cations, a few examples are:

• FactoryResetRequest, which requests a factory reset of the dish

• GetDeviceInfoRequest, which is the one shown in Listing 9.6

• GetStatusRequest, which requests the status of the dish

• RebootRequest, which asks the dish to reboot

But some requests do not look like they are used by those applications, such as:

• SetTrustedKeysRequest, shown in the Listing 9.7, which supposedly sets the provided public
keys for future use by the process or by the SSH agent.1

Listing 9.7: Message definition for SetTrustedKeysRequest

message SetTrustedKeysRequest {
repeated PublicKey keys = 1;

}

• GetHeapDumpRequest, which supposedly returns a dump of the Heap section of the process.

• SoftwareUpdateRequest, which supposedly initiates a software update with the provided
update bundle. This request will be further described in Section 10.1.

Unfortunately, most of these requests are not implemented in the binary we were analyzing (e.g.
SetTrustedKeysRequest, GetHeapDumpRequest), and some of them require authentication (e.g.
DishGetContextRequest, DishGetEmcRequest) both on the transport layer (secure gRPC chan-
nel) and application layer (by using the AuthenticateRequest). We are not entirely sure who is
supposed to use these requests and why most of them are not implemented in the binary, they could
be used by another Stalink product such as the WiFi router, or by Starlink support in the case of a
partially bricked device, for remote assistance. The most interesting request that is both implemented
and does not require authentication is the SoftwareUpdateRequest, which will be explained better
in Section 10.1. As an example, here is how the SetTrustedKeysRequest works.

SetTrustedKeysRequest

As shown in Listing 9.7, the request contains an array of PublicKeys, whose definition is shown in
Listing 9.8. A public key is composed of the public key encoded in hexadecimal and preceded by the
name of the encryption algorithm that has to be used, along with a list of capabilities the key should
enable, shown in Listing 9.9.

1We are not sure how these keys will be used because the implementation of this method is missing
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Listing 9.8: Definition of message PublicKey

message PublicKey {
string key = 1;
repeated Capability capabilities = 2;

}

Listing 9.9: Definition of enum Capability

enum Capability {
READ = 0;
READ_INTERNAL = 13;
READ_PRIVATE = 7;
LOCAL = 14;
WRITE = 1;
WRITE_PERSISTENT = 11;
DEBUG = 2;
ADMIN = 3;
SETUP = 4;
SET_SKU = 5;
REFRESH = 6;
FUSE = 8;
RESET = 9;
TEST = 10;
SSH = 12;

}

Listing 9.10 shows how a message of this kind can be constructed and sent to the server. As you
can see our public key has been generated with the elliptic curve ecdsa256 and the chosen capability
is just SSH access. We set all the other parameters, i.e. id, epoch_id and target_id, to random
values for the moment.

Listing 9.10: Python script constructing the SetTrustedKeysRequest message

request = device_pb2.Request(
id=0,
epoch_id=0,
target_id="unknown",
set_trusted_keys=device_pb2.SetTrustedKeysRequest(

keys = [
command_pb2.PublicKey(

key = "ecdsa256:" + hexkey,
capabilities = [

command_pb2.Capability.SSH
]

)
]

)
)

Sending this request results in an error from the server, saying that the target_id does not
match the one of the dish, and provides the correct one. After correcting the target id, the error says
that also the id and epoch_id are not correct, without saying what value we should send. To get
those missing ids, we need first to send another request, containing the GetNextIdRequest, which
is an empty request. This request is shown in Listing 9.11, this time the fields id and epoch_id are
ignored by the server.

Listing 9.11: Python script constructing the GetNextIdRequest message

request = device_pb2.Request(
id=1,
epoch_id=1,
target_id=DEV_ID,
get_next_id=common_pb2.GetNextIdRequest()

)

This request makes the server return an error as well, this time saying that the request is not
implemented. But by further analyzing the binary and by debugging the server we found that the
same error is returned also when a request is expected to be signed, while it isn’t. Thus, the request
has to be wrapped by a signed_request, which is of type SignedData. This request contains a
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serialized "inner" request, with its ecdsa256 signature. The public key used for verification is hard-
coded in the binary, so we patched it and inserted a newly generated key, for testing purposes. In
Listing 9.12, you can see the Python code that generates the SignedData message from an unsigned
message.

Listing 9.12: Python script that signs a message

def sign(message):
sk = ecdsa.SigningKey.from_pem(key_pem, hashfunc=hashlib.sha256)
data = message.SerializeToString()
signature = sk.sign(data,

hashfunc=hashlib.sha256,
sigencode=ecdsa.util.sigencode_der)

return common_pb2.SignedData(data=data, signature=signature)

After successfully signing the GetNextIdRequest we were able to get the right values to put in
the SetTrustedKeysRequest, just to find out that this request is not implemented. This time it’s
really unimplemented, by analyzing the handler code in the binary, we found the code that verifies
that all the parameters are correct and in the right format, but then the code that was supposed to
write the provided key somewhere is just missing.

Further work on this topic would be to analyze further every request handler for bugs or, better
to fuzz them since there exist effective mutators for the protobuf protocol, such as libprotobuf-
mutator.

9.2 Inter-Process Communication
According to Figure 7.4, Inter-Process Communication (IPC) is the last type of communication to be
discussed. Every process running in the runtime continuously shares information with other processes,
to collaborate and share statistics. As you can see from the figure, every process only communicates
with the User Terminal Control, which acts as an orchestrator for the whole runtime. The protocol
they are using has been designed by SpaceX, and it’s called Slate Sharing.

Transport Layer

It uses UDP for transport, and every process starts listening on a different port, on the loopback
interface and will receive messages from the control process on that port. On the other hand, the
control process starts listening on multiple ports, one for every process that needs to communicate
with it, so that the communication is bidirectional and without conflicts between processes. Port
numbers are configured through a configuration file that can be found at /sx/local/runtime/-
common/service_directory, in Listing 9.13 you can see a part of it, which lists the port numbers
for communications between software update and control, and between frontend and control.

Listing 9.13: Service Directory configuration file

################################################################################
# Software update
software_update_to_control localhost 27012 udp_proto
control_to_software_update localhost 27013 udp_proto

################################################################################
# Frontend
control_to_frontend localhost 6500 udp_proto
frontend_to_control localhost 6501 udp_proto

Application Layer

Every couple of processes exchange different kinds of data, and messages do not contain any informa-
tion about the content nor the structure of the data they transport, which is not the case for protocols

46



such as JSON or XML. Thus, to understand the content of messages we had to reverse engineer one
of the binaries that makes use of the protocol, and in our case, the best choice was once again the user
terminal frontend, which is the one implemented in Go.

Data is exchanged in binary form, by sending raw packed (no padding) C structures, in big-endian.
Every message contains a header, holding some information about the message, and a body, containing
the actual data to be shared. In Listing 9.14 you can see the data structure representing the message
header, from the GolangAnalyzer Ghidra plugin. With the same technique, we also extracted the
structure of the body of messages between the frontend process and control.

Listing 9.14: SlateHeader structure definition

**************************************************************
* Name: sx_slate.SlateHeader *
* Struct: *
* + 0x0 0x4 uint BwpType *
* + 0x4 0x4 uint Crc *
* + 0x8 0x8 longlong Seq *
* + 0x10 0x4 uint Frame *
**************************************************************

The header contains:

• BwpType, which is a fixed value, acts as a "magic number" for the protocol (00 00 01 20).

• Crc, whose name suggests it is a Cyclic Redundancy Check, so a sort of error-detecting code for
the message body, but by reverse engineering and sniffing messages, this field seems to be fixed
as well, but it is different for every couple of messages.

• Seq, which is a sequence number that is incremented every message, but the protocol does not
include any acknowledgment mechanisms to resend lost messages.

• Frame, which is used in case of fragmentation, i.e. when the message is bigger than the MTU
(Maximum Transmission Unit), which is usually set to 1500 bytes. In this case, the body of the
message is split into multiple frames, each one having an identical header, apart from the Frame
field, which is incremented each frame, starting from 0.

In Listing 9.15, you can see, as an example, the header of a message sent from the frontend process
to the control. The resulting payload is 20 bytes long, the first two double words are the BwpType
and the Crc, then the next quad-word is the Seq number and finally, the last double word is the Frame
number.

Listing 9.15: Header of a Slate message

00000000 00 00 01 20 24 5d 06 67 | BwpType, Crc
00000008 00 00 00 00 00 00 00 b6 | Seq
00000010 00 00 00 00 | Frame

The body of the message is encoded in the same way, for example in Listing 9.16 you can see part
of the structure of messages sent by the frontend process to control, while in Listing 9.17 you can see
a real message.

Listing 9.16: FrontendToControl structure definition

**************************************************************
* Name: slate.FrontendToControl *
* Struct: *
* + 0x0 0x1 bool AppReboot *
* + 0x1 0x1 bool TiltToStowed *
* + 0x4 0x4 uint StartDishCableTestRequests *
* + 0x8 0x1 bool IfLoopbackTest *
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* + 0x10 0x8 longlong Now *
* + 0x18 0x8 longlong StarlinkWifiLastConnected *
[...]

Listing 9.17: Body of a Slate message

00000000 00 00 01 20 24 5d 06 67 | Header
00000008 00 00 00 00 00 00 00 b6 | Header
00000010 00 00 00 00 00 00 00 00 | Header, AppReboot
00000018 00 00 00 00 00 00 00 00 | TiltToStowed, StartDishCableTestRequests
00000020 00 00 00 00 00 00 00 00 | IfLoopbackTest, Now (High)
00000028 64 D4 D5 5A 00 00 00 00 | Now (Low), StarlinkWifiLastConnected (High)
00000030 64 D4 D4 7A | StarlinkWifiLastConnected (Low)

If one clicks the "Tilt to Stowed" button on Starlink’s application, or the web interface, or directly
sends the gRPC message, the process would send the next Slate message with the TiltToStowed
set to true, and the control process would process the user request by actually tilting the antenna.
As you may have noticed, offsets and sizes of structure fields in Go do not match the ones shown in
the payload. This is because Go handles some datatypes and struct field alignment differently from
C. As an example, in Go a bool only takes 1 byte, while in C it takes 4 bytes, and padding between
structure fields (alignment) has been disabled (structure packing) to be more memory efficient while
transferring data.

Thanks to this information we would already be able to implement a message decoder (which we
did), but this would only work for the communication between the frontend process and control. And
to also be able to decode other communications we would need to manually reverse engineer every
other binary to find out the structure of messages, perhaps without even finding field names, but as
explained in Section 7.3, it is very hard to get useful information from C++ binaries. In Listing 9.18
you can see how we were parsing the header of Slate messages in Python, using the ctypes package.

Listing 9.18: Parsing of the Slate header in Python

class DumpableStructure(BigEndianStructure):
def dump(self):

for key, dtype in self._fields_:
print(f"{key:<30}: {getattr(self, key)}")

class SlateHeader(DumpableStructure):
_pack_ = 1
_fields_ = [

(’BwpType’, c_uint32),
(’Crc’, c_uint32),
(’Seq’, c_longlong),
(’Frame’, c_uint32)

]

Then, to understand how the protocol is handled in C++ binaries, we tried looking for some fields
of the structures we knew (the ones of the frontend process) in the control process, which should have
them in order to decode those incoming messages. We couldn’t find them in the binary, but we found
something way better, in the folder /sx/local/runtime/common there are a set of configuration
files, such as fontend_to_control, which contain the structure of every message exchanged by
processes. A snippet of frontend_to_control is shown in Listing 9.19.
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Listing 9.19: Protocol definition for messages from frontend to control

# Slate share message from gRPC frontend process to main control process.
app_reboot bool
tilt_to_stowed bool
start_dish_cable_test_requests uint32
if_loopback_test.enabled bool
now int64
starlink_wifi_last_connected int64
# [...]

With this, it is much easier to implement a more generic decoder that parses these protocol defini-
tions and decodes messages accordingly. Such a tool has been developed and will be discussed in the
next section.

9.2.1 Slate sniffer/injector
Slate messages are sent very fast, thus it is hard to understand what is happening without a proper
visualization tool. That is why we’ve implemented the Slate sniffer, a tool that sniffs for UDP packets
on the loopback interface and decodes them on the fly, by highlighting differences between consecutive
messages. The first version was only designed for the communication between the frontend process and
control because that was the only protocol definition we could get by reverse engineering the binaries.
In Figure 9.1 you can see a screenshot of the tool. It was very basic and later on, we also found out
that the decoding of messages was not working properly due to the differences in structure fields from
Go to C, explained in the previous section.

Figure 9.1: Screenshot of the Slate sniffer version 1

After the protocol definition files were found, we implemented a second version, much more elab-
orate, that would be able to decode messages exchanged between any couple of processes and present
them in a more readable way. In Figure 9.2 you can see the overall architecture of the new tool, which
we’ll describe in more detail. This tool has been implemented for the emulated environment, but we
designed it by keeping in mind that it would need to work also on the real dish. For this reason, most
of the work is done in the Sniffer, which is not in the device, and all the communications between the
sniffer and the dish happen through SSH.

The first component that is used when starting the sniffer, is the protocol definition parser, which
will parse configuration files:

• service_directory to know which "services" (i.e. message definitions) are available and on
which UDP ports they will communicate.

• [P1]_to_[P2] for every available couple of processes P1 and P2, to know the format of mes-
sages that will be exchanged.
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Figure 9.2: Architecture of the Slate sniffer version 2

This component will create SlateMessageParser objects, that will later be used to decode mes-
sages. The decoding is made using the struct python package.

After this, TCPdump will be launched on the dish, through SSH, and will listen on the loopback
interface, only capturing UDP packets that have as the destination port one of the ones found by the
parser. The output of TCPdump is piped to Scapy which will decode the packet, understand which
service it comes from, by reading the destination port, and will then extract the UDP payload and
pass it to the message decoder. Listing 9.20 shows a simplified version of it, that does not take into
account message fragmentation.

Listing 9.20: Simplified version of the sniffer code

for packet in reader:
try:

if packet[UDP]:
port = packet[UDP].dport
if port in self.slates:

payload = bytes(packet[UDP].payload)
slate: Slate = self.slates.get(port)
message = slate.parse_message(curr)
handler(slate.service.name, message)

except Exception as e:
print(e, file=sys.stderr)

When a message is parsed correctly, it will be stored in the Storage component, which in this case is
a simple in-memory database, only holding recent messages (configurable, based on available memory).
On top of all this, there is a Flask server, exposing some APIs, to know which services are available, to
know the schema of a message and, of course, to fetch messages. We also implemented a front end, as
a simple web interface, which is shown in Figure 9.3. From the current front end, it is possible to see
messages in real-time, spotting differences thanks to the highlighted changes, selecting which fields to
show and filtering or ordering them. The frontend module is easily replaceable thanks to the exposed
APIs, thus more complex interfaces can be integrated into the sniffer, to inspect the acquired data in
more ways.
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Figure 9.3: Screenshot of the current frontend interface for the sniffer

After having a way to see messages, we thought it would be interesting to be able to inject custom
messages, by editing the ones we are receiving or by creating new ones from scratch. For this reason, we
implemented the Slate injector, which shares most of the codebase with the sniffer. The architecture of
this tool is shown in Figure 9.4. Messages, to be received by processes, need to come from the loopback
interface, thus we cannot send them directly from the Injector. This is why the injector will start a
socat server on the dish, which will listen for UDP messages on the "external" network interface, and
will then forward them to the right UDP port, by changing the source address to localhost.2 Some
API endpoints have been implemented to be able to inject messages from the front end and the current
interface lets you edit and send a message or create a new one, Figure 9.5 shows a screenshot of what
the interface looks like.

Figure 9.4: Architecture of the Slate injector

Being able to inspect messages between processes helped us a lot in understanding what each pro-
cess does without being able to fully reverse-engineer them. Additionally, having the protocol definition
and an easy way to inject messages, a natural development of the project is to fuzz the protocol, which
will be tackled in Section 10.2. The full code of the Slate sniffer, injector and fuzzer is available on
Quarkslab’s GitHub [27].

2On production hardware, incoming UDP traffic is dropped by the firewall, so you’ll need to either delete some
iptables rules or use TCP between the injector and socat.
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Figure 9.5: Screenshot of the current frontend for the injector

10 Fuzzing
In the last part of my research period, we identified which parts of the software had been analyzed
enough and were more suitable for fuzz testing. To find a good fuzzable target, we had to take into
account multiple aspects:

• The possible attack vector in the case a bug was found:

– Can the bug be triggered by an authenticated user?

– Does the attacker need to be connected to the wifi network of the dish?

– Can the bug be triggered directly from the Internet?

– Does the attacker need to already have access to the dish? In this case, the bug could be
used for lateral movement inside the dish or privilege escalation.

• What is the impact of a possible bug in the target?

• How easily fuzzable is the target, and which kind of fuzzing is the most suitable for the target:

– How is the input provided?

– How isolated can the program be run? If a program makes use of many hardware peripherals
and/or interacts with other components of the runtime, it will be hard to fuzz it in an isolated
environment.

– How deeply have we analyzed the target to know its internal workings?

10.1 Side-load Software update
As we have seen in Subsection 9.1.2, from the internal network the dish creates, it is possible to trigger
a software update by sending a SoftwareUpdateRequest to the frontend process, through gRPC.
This is an interesting request because it is the only one that does not look like it is meant for the
user and does not require authentication. Furthermore, the input of this request is the update bundle,
which can be very big, while inputs for other requests are often empty or very simple. The update
bundle has to be split into chunks before being sent to the dish, Listing 10.1 shows a Python script
that sends this message.
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Listing 10.1: Python script that sends a software update bundle to the dish

CHUNK_SIZE = 16384

def update(data):
channel = grpc.insecure_channel(’192.168.100.1:9200’)
stub = device_pb2_grpc.DeviceStub(channel)

stream_id = int.from_bytes(os.urandom(4), byteorder=’little’)

for i in range(0, len(data), CHUNK_SIZE):
chunk = data[i:min(len(data), i + CHUNK_SIZE)]
request = device_pb2.Request(id = 1, epoch_id = 1, target_id = "unknown",

software_update = common_pb2.SoftwareUpdateRequest(
stream_id = stream_id,
data = chunk,
open = i == 0,
close = i + CHUNK_SIZE >= len(data)

)
)

Every message needs to have the same stream_id, which can be randomly generated, then the
first message has the open flag, while the last one has the close flag and all the ones in between
don’t have any of them. The receiver of the message is the frontend process, which will save the update
bundle in a temporary folder, without reading the content of it, so without performing any kind of
input sanitization, it will just check that the size of the bundle does not reach an hardcoded threshold.
After that, the frontend process will notify the control process that a sideload update is ready to be
applied, through a Slate message (see Section 9.2), and the control process will do the same for the
software update process. Once the latter receives the message, the update is ready to be started,
Figure 10.1 shows the overall flow of messages and actions the SoftwareUpdateRequest triggers.

Figure 10.1: Sideload update message flow

After the software update process is notified that a software update bundle is ready to be applied,
the update procedure starts. From this moment, there is no difference between this kind of software
update and the standard one, which is downloading the update bundle from Starlink’s backend. The
update bundle is an sxverity image (see Section 4.2.2), which will be verified by the program with
the same name and the inner rom1fs filesystem will be mounted. Once mounted, the software update
process will look for partition images in the mount point. Every partition image will also have a
SHA512 hashsum for additional integrity verification. Finally, each available partition image will be
flashed on the corresponding /dev/blk/other/* eMMC logical partition (see Subsection 7.2.2).
Figure 10.2 summarizes this with a diagram.
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Figure 10.2: Software update bundle path

The update bundle is not accessed directly by the software update process, so the first process
reading the content of the provided input is sxverity. Thus any fuzz test can be performed directly
on that binary, skipping all previous steps. We’ve already analyzed how the verification of sxverity
works in Section 4.2.2. As you can see in Figure 10.3, the fuzzable code inside sxverity is very
limited because the signature verification is made by a library, which is out of scope, and anything
happening after a successful signature verification is to be considered unreachable for us because if we
can reach that state, it means we were able to craft an update package that would be flashed so we
don’t need to find other bugs there.

Figure 10.3: Fuzzable code inside sxverity

The only part of the input that will be parsed by the code under test is the header of the sxverity
image, thus that will be the only part of the input that the fuzzer will mutate. Since that part of
the program can be executed completely in complete isolation, we’ve fuzzed it inside unicorn, a
lightweight CPU emulator that can be instructed from Python, by using its bindings. The first step
was being able to emulate the code we want to test and setting up the harness for our fuzzer, which
includes:

• Loading the binary.

54



• Identifying a good starting point in the code, in which it is easy to set up the whole environment,
such as placing the input in the right memory location and setting up every other memory
structure that will be used by the code under testing. As an example, Listing 10.2 shows how
the input is placed in memory and how registers holding the addresses to the input locations are
set.

Listing 10.2: Function place_input_cb of the harness

def place_input_cb(mu: Uc, content: bytes, persistent_round, data):
content_size = len(content)

if content_size < INPUT_MIN_LEN:
return False

pubkey, header = key_and_header_from_data(content)

# write data in memory
mu.mem_write(PUBKEY_ADDR, pubkey)
mu.mem_write(HEADER_ADDR, header)

# prepare function arguments
mu.reg_write(UC_ARM64_REG_X2, PUBKEY_ADDR) # pubkey address
mu.reg_write(UC_ARM64_REG_X3, 0x40) # nblocks
mu.reg_write(UC_ARM64_REG_X4, HEADER_ADDR) # header buffer address

return True

• Identifying function calls, hooking them and emulating them in Python, so that we do not spend
time testing library code, nor do we have to load them in memory and handle dynamically
loaded libraries. As an example, Listing 10.3 shows how the libc function memcpy is hooked and
emulated.

Listing 10.3: memcpy hook in the harness

if address == MEMCPY_ADDR:
# read arguments from registers
dest = mu.reg_read(UC_ARM64_REG_X0)
src = mu.reg_read(UC_ARM64_REG_X1)
n = mu.reg_read(UC_ARM64_REG_X2)

# read the data from src
data = mu.mem_read(src, n)
# write data in dst
mu.mem_write(dest, bytes(data))
# return the address of dest
mu.reg_write(UC_ARM64_REG_X0, dest)
# jump to the return address
lr = mu.reg_read(UC_ARM64_REG_LR)
mu.reg_write(UC_ARM64_REG_PC, lr)

• Identifying an ending point, which has to be a point in the program in which we stop the
emulation because the run was successful (no bugs).

The nicest thing about using Unicorn, other than being pretty easy to configure and instruct, is
the flawless support with AFL++ (American Fuzzy Lop plus plus) which we used as fuzzer. AFL++
working with Unicorn can detect crashes and most importantly, gather coverage information, in a
transparent manner, so that it can perform coverage-guided mutations. Setting up the fuzzer with
Unicorn, is pretty straightforward, as you can see in Listing 10.4. The fuzzer also needs some initial
test cases, called seeds, for that we’ve used some valid headers, taken from sxverity images found
in the dish, and some randomly generated headers.
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Listing 10.4: AFL++ set up inside Unicorn

# set the starting address
mu.reg_write(UC_ARM64_REG_PC, START_ADDRESS)
# start the fuzzer
uc_afl_fuzz(

uc=mu,
input_file="@@",
place_input_callback=place_input_cb,
exits=[END_ADDRESS]

)

10.1.1 Results
The fuzzer ran for around 24 hours, performing more than one million executions, but unfortunately,
no crash was recorded. This was expected since the tested codebase was very limited and the structure
of the input was very simple, not having complex data structures or variable length fields, the most
common memory-related bugs are avoided.

10.2 IPC fuzzer
The other component we tested with fuzzing was Inter-Process Communication (IPC) - which was
deeply analyzed in Section 9.2 - since we already had developed a set of tools to analyze and tamper
with this communication. In this case, we are not going to fuzz a single binary, but rather the whole
set of processes that form the runtime of the device, since every one of them is using Slate messages
to communicate. The fuzzing approach was completely different from the one we used for sxverity,
which was gray-box fuzzing, because:

• The codebase we are trying to test is enormous

• We weren’t able to exactly identify the code that handles slate messages in every binary and,
more importantly, bugs can be also found outside this code, because of some inconsistencies in
the program state caused by wrongly interpreted inputs.

• Binaries need to run in a dish-like environment because they continuously interact with other
components of the system, most of them don’t even run in our emulated environment.

• Also recording coverage would have been challenging, because for that we need to instruct the
binaries since we don’t have the source code to recompile them, and the fuzzer would need to be
run on the dish.

For the above reasons, we used black-box fuzzing, without coverage-guided mutations, which is
usually called "dumb" fuzzing. Boofuzz was used as fuzzer, it is a simple and easy-to-use fuzzer
specifically designed for network protocols, which was a perfect fit for what we were looking for.
Boofuzz does not generate input in a completely random way because you are giving it the protocol
definition to be used in the communication, with the possibility of defining sequences of messages using
a finite state machine. In our case, every message was disconnected from the others (apart from the
sequence number), so defining the format of messages was enough. The fuzzer will then mutate every
field of the message, by trying some values that could trigger a bug, e.g. for an int32 the fuzzer will
try values such as {0, 1, -1, INT_MAX, -INT_MAX, ...}. As an example, Listing 10.5 shows
how some fields of Slate messages are "translated" to Boofuzz protocol definition.

Listing 10.5: Boofuzz protocol definition for some data types

if param.dtype.name == "BOOL":
return Simple(

name=param.name,
default_value=b"\x00\x00\x00\x00",
fuzz_values=[b"\x00\x00\x00\x00", b"\x00\x00\x00\x01"],

)
if param.dtype.name == "INT8" or param.dtype.name == "UINT8":
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return Byte(name=param.name)
if param.dtype.name == "INT32" or param.dtype.name == "UINT32" or param.dtype.name == "

FLOAT":
return DWord(name=param.name)

Every data type used in the Slate message protocol could be encoded using Boofuzz’s standard
types, apart from the Sequence number, which needs to store an internal state to increment itself every
iteration, you can see its implementation in Listing 10.6. Static fields such as the Bwptype and Crc
can be encoded using the Static type from Boofuzz.

Listing 10.6: SequenceNumber data type implementation

class SequenceNumber(Fuzzable):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs, fuzzable=False, default_value=0)
self._curr = 0

def encode(self, value: bytes = None, mutation_context=None) -> bytes:
curr = self._curr
self._curr += 1
return int.to_bytes(curr, length=8, byteorder="big")

Once the message structure has been defined, the fuzzer can use the code from the Slate injector
(see Section 9.2.1) to send the messages. The only component that needs to be implemented at this
point is something that can detect if a program has crashed after a message was sent. At first, we
were issuing the pgrep command through SSH, but this was adding an overhead that was slowing
the fuzzer. So we’ve implemented a simple script that runs on the dish, opening a TCP socket and
waiting for a connection which will then be used to directly communicate with the fuzzer. The part of
the process monitor that will run on the client (fuzzer machine) can be integrated into the fuzzer, by
inheriting Boofuzz’s BaseMonitor and implementing its methods, such as alive (check if the target
process is still alive) and restart_target (restart the target process). The resulting architecture is
shown in Figure 10.4.

Figure 10.4: Architecture of the fuzzer codebase

10.2.1 Results
Some crashes were found by fuzzing the communication control_to_frontend, so messages that
are supposedly coming from the control process and going to the frontend process. But none of them
appeared to be exploitable in ways other than simply crashing the program, causing a Denial of Service
for the frontend applications. This is because the frontend process is a Go binary and the Go runtime
is the piece of software that makes the process crash (through the panic function) because it detects
that something fishy is going on.
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As an example, the following are the details of one of these crashes. In Listing 10.7 you can see
part of the stack trace produced by the Go runtime upon the crash, from which you can understand
that the crash is caused by the function UpdateObstructionMap, which tries to allocate too much
memory.

Listing 10.7: Crash synopsis from the frontend process

fatal error: runtime: out of memory

goroutine 5 [running]:
[...]
runtime.(*mheap).alloc(0x50468000?, 0x28234?, 0xd0?)
[...]
main.(*DishControl).UpdateObstructionMap(0x40003be000, {0x7a90f8?, 0x4000580380?})
[...]

By inspecting further this function, we understood how the obstruction map is transferred to the
frontend process. First of all, the obstruction map is a 3D map of the sky above the antenna, indicating
whether the antenna has a clear view of the sky or is obstructed by an obstacle such as a tree or other
buildings, that the user can see from the frontend applications. This map is not produced by the
frontend process, thus it has to be sent to it through Slate messages.

Listing 10.8: Part of message definition from control_to_frontend

obstruction_map.config.num_rows uint32
obstruction_map.config.num_cols uint32
obstruction_map.current.obstructed bool
obstruction_map.current.index uint32

In Listing 10.8 you can see part of the message structure definition that carries information about
the obstruction map. The obstruction map is represented in memory as a matrix, in which each point
can be obstructed or not. The control process sends this information by sending one Slate message for
each point in the matrix, by setting the right index and setting obstructed to true or false.
The size of the matrix is not fixed, and its dimensions can be set by the control process by using the
num_rows and num_cols fields in the message. This is where the bug resides, in fact when sending
big values in these two fields, the program tries to allocate enough memory for the matrix and panics
for this reason.

Listing 10.9: Decompiled code that handles the size of the obstruction map

1 len = ObstructionMapConfigNumCols * ObstructionMapConfigNumRows;
2 if (len == (this->obstructionMap).snr.__count)
3 goto LAB_0050b7f4;
4 (this->obstructionMap).numRows = ObstructionMapConfigNumRows;
5 (this->obstructionMap).numCols = ObstructionMapConfigNumCols;
6 puVar5 = runtime.makeslice(&datatype.Float32.float32,len,len);

Listing 10.9 shows the decompiled and annotated code of the frontend binary which handles the
size of the obstruction upon the reception of a slate message. Line 1 computes the size of the matrix
and Line 2 compares it with the current size of the matrix the program has in memory, if the two
differ then the dimensions are updated in the internal memory structure on Lines 4 and 5, and then
the new matrix is allocated using the makeslice method of the Go runtime on Line 6. As you can
see, no checks are performed on the size it is being allocated, nor on the result of the multiplication
between the two given dimensions. This would be very dangerous in C, but the Go runtime handles
all the corner cases automatically, by checking that the size of the asked memory is positive and not
too big. The Go runtime also checks every array access, otherwise, an arbitrary write would probably
be possible by playing with the index and the size of the matrix.

Note that this bug can only be triggered by sending crafted UDP packets to a service bound to
localhost only. Therefore it is not possible to trigger it from an external network. Additionally, the
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iptables configuration of the UT filters out incoming UDP packets, so spoofing packets with a lo-
calhost source IP would not work either. Therefore we did not consider this a vulnerability but merely
a bug.

After we implemented the fuzzer and used it in the emulator, we were provided a rooted UT by
Starlink, then we confirmed the presence of the aforementioned bug on a real device and fuzzed some
more processes that weren’t working in the emulator.

11 Conclusion
A lighter, less detailed, version of this work can be found on Quarkslab’s blog [26], while the discussed
tools can be found on Quarkslab’s GitHub [27].

This work and the tools we have published are meant to be reused for further research on Starlink’s
User Terminal. Unfortunately, due to some technical issues and time constraints, we did not manage
to fully inspect the network stack and protocols used in the satellite communications, but hopefully,
this knowledge base of the higher-level management function of the runtime can be used in the future
to assist in that effort. I encourage research on this topic because SpaceX’s security team is there to
help you and they also offer some juicy bounties [15].

Further work on this topic includes (but is not limited to):

• Fuzz the gRPC communications using libprotobuf-mutator [9].

• Analyze better the content of Slate messages to understand their meanings and perhaps find
logic bugs.

• Investigating how the network stack is implemented:

– How the traffic is forwarded from the Linux’s network interface to the RF hardware.

– How the system interacts with the RF hardware.

– How the Physical and Data Link layers of the RF communications are implemented.

• And many other things, the firmware is huge and we’ve probably just scratched the surface here.
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Appendix A Attachments

A.1 Memory blocks extractor

1 import sys
2 import os
3
4 # Every element of this array is a tuple:
5 # (NAME, SIZE (Kb)), Addresses start from 0.
6 MEMORY_LAYOUT = [
7 (f"bootfip{i}", 1024) for i in range(4)
8 ] + [
9 ("bootterm1", 512),

10 ("bootmask1", 512),
11 ("bootterm2", 512),
12 ("bootmask2", 512),
13 ("fip_a.0", 1024),
14 ("fip_b.0", 1024),
15 ("fip_a.1", 1024),
16 ("fip_b.1", 1024),
17 ("fipterm1", 1024),
18 ("fipterm2", 1024),
19 ("unused", 2816),
20 ("per_vehicle_config_a", 128),
21 ("per_vehicle_config_b", 128),
22 ("mtdoops", 192),
23 ("version_a", 128),
24 ("version_b", 128),
25 ("secrets_a", 128),
26 ("secrets_b", 128),
27 ("sxid", 320),
28 ("linux_a", 32 * 1024),
29 ("linux_b", 32 * 1024),
30 ("sx_a", 24 * 1024),
31 ("sx_b", 24 * 1024),
32 ("edr", 151367),
33 ("dish_config", 32 * 1024)
34 ]
35
36 def main():
37 input_file = sys.argv[1]
38 output_folder = sys.argv[2]
39
40 os.mkdir(output_folder)
41 with open(input_file, "rb") as file_in:
42 handle_file(file_in, output_folder)
43
44 def handle_file(file_in, output_folder):
45 for file in MEMORY_LAYOUT:
46 with open(os.path.join(output_folder, file[0]), "wb") as file_out:
47 file_out.write(file_in.read(file[1] * 1024))
48
49 if __name__ == "__main__":
50 main()
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A.2 ECC data stripper

1 # this script removes ECC data from a file
2 import sys
3
4 NPAR = 32
5 ECC_BLOCK_SIZE = 255
6 ECC_MD5_LEN = 16
7 ECC_EXTENSION = b"ecc"
8 ECC_FILE_MAGIC = b"SXECCv"
9 ECC_FILE_VERSION = b"1"

10 ECC_FILE_MAGIC_LEN = len(ECC_FILE_MAGIC)
11 ECC_FILE_HEADER_LEN = ECC_FILE_MAGIC_LEN + len(ECC_FILE_VERSION)
12 ECC_FILE_FOOTER_LEN = 1 + 4 + ECC_MD5_LEN + NPAR
13 ECC_DAT_SIZE = ECC_BLOCK_SIZE - NPAR - 1
14 ECC_FIRST_DAT_SIZE = ECC_BLOCK_SIZE - ECC_FILE_HEADER_LEN - NPAR - 1
15 ECC_BLOCK_TYPE_DATA = ord(’*’)
16 ECC_BLOCK_TYPE_LAST = ord(’$’)
17 ECC_BLOCK_TYPE_FOOTER = ord(’!’)
18 ECC_BLOCK_TYPE_INDEX = ECC_BLOCK_SIZE - NPAR - 1
19
20 def unecc(input_file, output_file):
21 with open(input_file, "rb") as file_in:
22 with open(output_file, "wb") as file_out:
23 size = 0
24 # read the first block
25 block = file_in.read(ECC_BLOCK_SIZE)
26 file_out.write(handle_first_block(block))
27 size += ECC_FIRST_DAT_SIZE
28
29 # read blocks until we reach the last one
30 while block[ECC_BLOCK_TYPE_INDEX] == ECC_BLOCK_TYPE_DATA:
31 block = file_in.read(ECC_BLOCK_SIZE)
32 # if it’s the last block, read the footer to compute the padding length
33 if block[ECC_BLOCK_TYPE_INDEX] == ECC_BLOCK_TYPE_LAST:
34 footer = file_in.read(ECC_FILE_FOOTER_LEN)
35 payload_size = int.from_bytes(footer[1:5], "big")
36 last_block_size = payload_size - size
37 file_out.write(handle_block(block)[:last_block_size])
38 else:
39 file_out.write(handle_block(block))
40 size += ECC_DAT_SIZE
41
42 def handle_first_block(data):
43 assert(data.startswith(ECC_FILE_MAGIC + ECC_FILE_VERSION))
44 assert(data[ECC_BLOCK_TYPE_INDEX] == ECC_BLOCK_TYPE_DATA
45 or data[ECC_BLOCK_TYPE_INDEX] == ECC_BLOCK_TYPE_LAST)
46 # remove magic bytes, version byte and th ECC data
47 return data[ECC_FILE_HEADER_LEN:ECC_FILE_HEADER_LEN + ECC_FIRST_DAT_SIZE]
48
49 def handle_block(data):
50 assert(data[ECC_BLOCK_TYPE_INDEX] == ECC_BLOCK_TYPE_DATA
51 or data[ECC_BLOCK_TYPE_INDEX] == ECC_BLOCK_TYPE_LAST)
52 return data[:ECC_DAT_SIZE]
53
54 if __name__ == "__main__":
55 if len(sys.argv) != 3:
56 print(f"Usage: python {sys.argv[0]} input_file output_file", file=sys.stderr)
57 input_file = sys.argv[1]
58 output_file = sys.argv[2]
59 unecc(input_file, output_file)
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